PHY6937: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 16: Line 16:
<math>H=\sum_\vec{r}[\psi_\sigma^\dagger (\vec{r})(\epsilon_\vec{p}-\mu)\psi_\sigma^\dagger (\vec{r}) +g\psi_\uparrow^\dagger (\vec{r})\psi_\downarrow^\dagger (\vec{r})\psi_\downarrow (\vec{r})\psi_\uparrow (\vec{r})]</math>
<math>H=\sum_\vec{r}[\psi_\sigma^\dagger (\vec{r})(\epsilon_\vec{p}-\mu)\psi_\sigma^\dagger (\vec{r}) +g\psi_\uparrow^\dagger (\vec{r})\psi_\downarrow^\dagger (\vec{r})\psi_\downarrow (\vec{r})\psi_\uparrow (\vec{r})]</math>


in which, <math>g<0</math> and <math>|g|<<\epsilon_{F}</math>
where <math>g<0</math> and <math>|g|<<\epsilon_{F}</math>.


For this system, the partition function is:
For this system, the partition function is:
Line 22: Line 22:
<math>Z=\int D[\psi_\sigma ^{*} (\tau, \vec{r}), \psi_\sigma  (\tau, \vec{r})]e^{-S_{BCS}}</math>
<math>Z=\int D[\psi_\sigma ^{*} (\tau, \vec{r}), \psi_\sigma  (\tau, \vec{r})]e^{-S_{BCS}}</math>


where, <math>S_{BCS}=\int_0^\beta d\tau \sum_\vec{r}[\psi_\sigma^\dagger (\tau, \vec{r})(\partial _\tau+\epsilon_\vec{p}-\mu)\psi_\sigma^\dagger (\vec{r}) +g\psi_\uparrow^\dagger (\vec{r})\psi_\downarrow^\dagger (\vec{r})\psi_\downarrow (\vec{r})\psi_\uparrow (\vec{r})]</math>
where <math>S_{BCS}=\int_0^\beta d\tau \sum_\vec{r}[\psi_\sigma^\dagger (\tau, \vec{r})(\partial _\tau+\epsilon_\vec{p}-\mu)\psi_\sigma^\dagger (\vec{r}) +g\psi_\uparrow^\dagger (\vec{r})\psi_\downarrow^\dagger (\vec{r})\psi_\downarrow (\vec{r})\psi_\uparrow (\vec{r})]</math>


It doesn't matter to multiply partition function by a constant:
It doesn't matter to multiply partition function by a constant:
Line 28: Line 28:
<math>Z\rightarrow Z=\int D[\psi_\sigma ^{*} (\tau, \vec{r}), \psi_\sigma  (\tau, \vec{r})] D[\Delta^{*}(\tau, \vec{r}),\Delta (\tau, \vec{r})] e^{-S_{BCS}-S_{\Delta}}</math>
<math>Z\rightarrow Z=\int D[\psi_\sigma ^{*} (\tau, \vec{r}), \psi_\sigma  (\tau, \vec{r})] D[\Delta^{*}(\tau, \vec{r}),\Delta (\tau, \vec{r})] e^{-S_{BCS}-S_{\Delta}}</math>


where, <math>S_\Delta=-\int_0^\beta d\tau\sum_{\vec{r}}\frac{1}{g}\Delta^*(\tau,\vec{r})\Delta(\tau,\vec{r})</math>
where <math>S_\Delta=-\int_0^\beta d\tau\sum_{\vec{r}}\frac{1}{g}\Delta^*(\tau,\vec{r})\Delta(\tau,\vec{r})</math>


Here, we need to pay attention:
<math>\psi^\dagger</math> and <math>\psi</math> are grassmann numbers.
<math>\psi^\dagger</math> and <math>\psi</math> are grassmann numbers.
<math>\Delta^*</math> and <math>\Delta</math> are constant.
<math>\Delta^*</math> and <math>\Delta</math> are constant.
Line 43: Line 42:
Then, <math>S_\Delta=-\int_0^\beta d\tau \sum_{\vec{r}}{\{\frac{1}{g}\Delta^*\Delta + \Delta^*\psi_\uparrow \psi_\downarrow  \Delta\psi^\dagger_\downarrow \psi^\dagger_\uparrow+g\psi^\dagger_\downarrow \psi^\dagger_\uparrow \psi_\uparrow \psi_\downarrow}\}</math>
Then, <math>S_\Delta=-\int_0^\beta d\tau \sum_{\vec{r}}{\{\frac{1}{g}\Delta^*\Delta + \Delta^*\psi_\uparrow \psi_\downarrow  \Delta\psi^\dagger_\downarrow \psi^\dagger_\uparrow+g\psi^\dagger_\downarrow \psi^\dagger_\uparrow \psi_\uparrow \psi_\downarrow}\}</math>


Set
<math>\begin{align}S&=S_{BCS}+S_{\Delta}\\
<math>\begin{align}S&=S_{BCS}+S_{\Delta}\\
&=\int_0^\beta d\tau \sum_{\vec{r}}\{  \psi_\sigma^\dagger(\tau, \vec{r})(\partial _\tau+\epsilon_\vec{p}-\mu)\psi_\sigma^\dagger (\tau, \vec{r})    \rightarrow  S_0 \\
&=\int_0^\beta d\tau \sum_{\vec{r}}\{  \psi_\sigma^\dagger(\tau, \vec{r})(\partial _\tau+\epsilon_\vec{p}-\mu)\psi_\sigma^\dagger (\tau, \vec{r})    \rightarrow  S_0 \\

Revision as of 19:41, 13 February 2011

Welcome to Phy 6937 Superconductivity and superfluidity

PHY6937 is a one semester advanced graduate level course. Its aim is to introduce concepts and theoretical techniques for the description of superconductors and superfluids. This course is a natural continuation of the "many-body" course PHY5670 and will build on the logical framework introduced therein, i.e. broken symmetry and adiabatic continuity. The course will cover a range of topics, such as the connection between the phenomenological Ginzburg-Landau and the microscpic BCS theory, Migdal-Eliashberg treatment of phonon mediated superconductivity, unconventional superconductivity, superfluidity in He-4 and He-3, and Kosterlitz-Thouless theory of two dimensional superfluids.


The key component of the course is the collaborative student contribution to the course Wiki-textbook. Each team of students is responsible for BOTH writing the assigned chapter AND editing chapters of others.

Team assignments: Spring 2011 student teams



Outline of the course:

Pairing Hamiltonian and BCS instability

We can write the Hamiltonian of the system as:

where and .

For this system, the partition function is:

where

It doesn't matter to multiply partition function by a constant:

where

and are grassmann numbers. and are constant. and behave like constant.

Let's make a shift of the constant:

Then,

then,

Microscopic derivation of the Giznburg-Landau functional

Little Parks experiment