Phy5670/HubbardModel 2DCalculations: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 39: Line 39:
The only contraction combination possible, due to orthogonal spins, results in the following set of Green's functions:
The only contraction combination possible, due to orthogonal spins, results in the following set of Green's functions:


<math> \langle S_{int} \rangle = \bigg \langle \int_{0}^{\beta} d\tau \frac{U}{M} \sum_{k,k',q} c_{k,\uparrow}^{\dagger} c_{k',\downarrow}^{\dagger} c_{k'+q,\downarrow} c_{k-q,\uparrow} \bigg \rangle </math>
<math> \langle S_{int} \rangle = \bigg \langle \int_{0}^{\beta} d\tau \frac{U}{M} \sum_{k,k',q} c_{k,\uparrow}^{\dagger}(\tau) c_{k',\downarrow}^{\dagger}(\tau) c_{k'+q,\downarrow}(\tau) c_{k-q,\uparrow}(\tau) \bigg \rangle </math>


<math> = \int_{0}^{\beta} d\tau \frac{U}{M} \sum_{k,k'} \big \langle \mathcal{G}_{0}(k\tau,k\tau)\mathcal{G}_{0}(k'\tau,k'\tau) \big \rangle </math>
<math> = \int_{0}^{\beta} d\tau \frac{U}{M} \sum_{k,k'} \big \langle \mathcal{G}_{0}(k\tau,k\tau)\mathcal{G}_{0}(k'\tau,k'\tau) \big \rangle </math>

Revision as of 19:29, 8 December 2012

Hubbard Model: 2D Calculations

Expansion of the Hubbard model Hamiltonian into two dimensions allows us to calculate various properties. In 2D, the Hamiltonian can be written as:

The grand canonical potential, Omega, is best calculated by using coherent state path integral. The grand partition function is defined as:

which can be expanded as:

which utilizes cumulant expansion. We begin to calculate the grand canonical potential by analyzing the contribution from :

Now we look at the contribution from the first order cumulant expansion. First we'll need to convert Hint to momentum space:

For simplicity, we will combine the and into a single index as . Evaluating the Kronecker deltas yields:

The only contraction combination possible, due to orthogonal spins, results in the following set of Green's functions:

Combining both terms, the grand canonical potential to first order is: