Electron-phonon interactions and Kohn anomalies: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 18: Line 18:
Where
Where
    
    
<math>H^0_{el} = \sum_{k \sigma}E_kc^\dagger_{k \sigma}c_{k \sigma}</math>
<math>H^0_{el} = \sum_{k \sigma}E_k c^\dagger_{k \sigma} c_{k \sigma}</math>
<math>H^0_{ph} = \sum_{k \lamda}E_kc^\dagger_{k \sigma}c_{k \sigma}</math>
 
<math>H^0_{ph} = \sum_{k \lambda}\omega_{k \lambda} a^\dagger_{k \lambda} + \frac{1}{2}</math>
<math>H^0_{el} = \sum_{k \sigma}E_kc^\dagger_{k \sigma}c_{k \sigma}</math>
<math>H^0_{el} = \sum_{k \sigma}E_kc^\dagger_{k \sigma}c_{k \sigma}</math>



Revision as of 17:33, 12 December 2012

Electron-phonon interactions

Free electrons in lattice

Phonons: crystal vibrations

Lattice Vibration and Phonons in 1D

Acoustical and Optical Phonon in 3D

Derivation of Hamiltonian Electron-Phonon Coupling

The Hamiltonian for the electron-phonon interaction can be described as

Where


Feynman diagrams of electron-phonon coupling

Electron-phonon interaction in the lattice model

Jellium model

The Polaron problem

Linear response calculations of electron-phonon interactions

Kohn anomalies

Examples