Electron-phonon interactions and Kohn anomalies: Difference between revisions
Line 8: | Line 8: | ||
In contrary to the independent electron model, where electrons experience weak periodic potential, the interaction of an electron with all other electrons and nuclei is represented by ‘effective potential’ in some average way, in the tight-binding approximation, electrons move in strong periodic potentials which cannot be approximated by an average background. In this situation, we can assume that the atoms are very widely separated and atomic orbitals remain undistorted. | In contrary to the independent electron model, where electrons experience weak periodic potential, the interaction of an electron with all other electrons and nuclei is represented by ‘effective potential’ in some average way, in the tight-binding approximation, electrons move in strong periodic potentials which cannot be approximated by an average background. In this situation, we can assume that the atoms are very widely separated and atomic orbitals remain undistorted. | ||
As an example, the problem will be revisited in the second quantization language. | |||
===Phonons: crystal vibrations=== | ===Phonons: crystal vibrations=== |
Revision as of 18:26, 12 December 2012
Electron-phonon interactions
The study of interactions between electrons and phonons, is an interesting and classical topic in quantum many body theory as well as condensed matter physics. The electron-phonon interaction leads to many novel properties in metals, for instance, electrical resistance, thermal resistance, superconductivity and the renormalization of linear electronic specific heat. [1]
Free electrons in lattice
In contrary to the independent electron model, where electrons experience weak periodic potential, the interaction of an electron with all other electrons and nuclei is represented by ‘effective potential’ in some average way, in the tight-binding approximation, electrons move in strong periodic potentials which cannot be approximated by an average background. In this situation, we can assume that the atoms are very widely separated and atomic orbitals remain undistorted.
As an example, the problem will be revisited in the second quantization language.
Phonons: crystal vibrations
Lattice Vibration and Phonons in 1D
Acoustical and Optical Phonon in 3D
Derivation of Hamiltonian Electron-Phonon Coupling
The Hamiltonian for the electron-phonon interaction can be described as
Where