Photoelectric Example: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
'''Solution:''' The work function is | '''Solution:''' The work function is | ||
<math>eW_{0}=h\nu_{th}=\frac{hc}{\lambda }=\frac{ | <math>eW_{0}=h\nu_{th}=\frac{hc}{\lambda }=\frac{12400 \text{ eV}\cdot\AA}{6000\,\AA}=2.07\text{ eV}</math> | ||
The photoelectric equation then gives | The photoelectric equation then gives | ||
Line 11: | Line 11: | ||
<math>eV_{s}=h\nu-eW_{0}=\frac{hc}{\lambda}-eW_{0}</math> | <math>eV_{s}=h\nu-eW_{0}=\frac{hc}{\lambda}-eW_{0}</math> | ||
<math>2.5\text{ eV}=\frac{ | <math>2.5\text{ eV}=\frac{12400 \text{ eV}\cdot\AA}{\lambda }-2.07\text{ eV}\Rightarrow \lambda =2713\,\AA</math> |
Revision as of 14:42, 18 March 2013
Source: "Theory and problems of Modern Physics", Ronald Gautreau,Problem 9.13
Problem: The emitter in a photoelectric tube has a threshold wavelength of 6000 Å. Determine the wavelength of the light incident on the tube if the stopping potential for this light is 2.5 V.
Solution: The work function is
The photoelectric equation then gives