Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
(1) The energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math>
(1) The energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math>
so the average energy in state <math> \psi </math> is:
so the average energy in state <math> \Psi </math> is:
<math>\left\langle E\right\rangle=\iiint \psi^{\ast}H\psi\,d^3\textbf{r}=\iiint \psi^{\ast}\left (-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi\right )\,d^3\textbf{r}</math>
<math>\left\langle E\right\rangle=\iiint \Psi^{\ast}H\Psi\,d^3\textbf{r}=\iiint \Psi^{\ast}\left (-\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi\right )\,d^3\textbf{r}</math>


Using the identity, <math>\psi^*\nabla^2\psi=\nabla\cdot\left(\psi^*\nabla\psi\right)-\nabla\psi^{\ast}\cdot\nabla\psi,</math> we obtain
Using the identity, <math>\Psi^*\nabla^2\Psi=\nabla\cdot\left(\Psi^*\nabla\Psi\right)-\nabla\Psi^{\ast}\cdot\nabla\Psi,</math> we obtain


<math>\left\langle E\right\rangle=-\frac{\hbar^2}{2m}\iiint\left (\nabla\cdot\left (\psi^{\ast}\nabla\psi\right)-\nabla\psi^{\ast}\cdot\nabla\psi\right )\,d^3\textbf{r}+\iiint\psi^{\ast}V\psi\,d^3\textbf{r} </math>
<math>\left\langle E\right\rangle=-\frac{\hbar^2}{2m}\iiint\left (\nabla\cdot\left (\Psi^{\ast}\nabla\Psi\right)-\nabla\Psi^{\ast}\cdot\nabla\Psi\right )\,d^3\textbf{r}+\iiint\Psi^{\ast}V\Psi\,d^3\textbf{r} </math>
<math>=-\frac{\hbar^2}{2m}\iiint\nabla\cdot\left (\psi^{\ast}\nabla\psi\right)\,d^3\textbf{r}+\frac{\hbar^2}{2m}\iiint\nabla\psi^{\ast}\cdot\nabla\psi\,d^3\textbf{r}+\iiint\psi^{\ast}V\psi\,d^3\textbf{r}</math>
<math>=-\frac{\hbar^2}{2m}\iiint\nabla\cdot\left (\Psi^{\ast}\nabla\Psi\right)\,d^3\textbf{r}+\frac{\hbar^2}{2m}\iiint\nabla\Psi^{\ast}\cdot\nabla\Psi\,d^3\textbf{r}+\iiint\Psi^{\ast}V\Psi\,d^3\textbf{r}</math>


If we apply Gauss' Theorem to the first term,
If we apply Gauss' Theorem to the first term,


<math>-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right) d^3x=\iint\psi^*\nabla\psi\cdot d\textbf{S},</math>
<math>-\frac{\hbar^2}{2m}\iiint\nabla\left (\Psi^{\ast}\nabla\Psi\right )\,d^3\textbf{r}=\iint\Psi^{\ast}\nabla\Psi\cdot d\textbf{S},</math>


as well as the condition, <math>\lim_{r \to \infty}\psi^*\nabla\psi=0,</math> we obtain
as well as the condition, <math>\lim_{r \to \infty}\Psi^{\ast}\nabla\Psi=0,</math> we obtain


<math>\left\langle E\right\rangle=\int W\,d^3\textbf{r}=\int\left [\frac{\hbar^2}{2m}\nabla\psi^{\ast}\cdot\nabla\psi+\psi^{\ast}V\psi\right ]d^3\textbf{r}</math>
<math>\left\langle E\right\rangle=\int W\,d^3\textbf{r}=\int\left [\frac{\hbar^2}{2m}\nabla\Psi^{\ast}\cdot\nabla\Psi+\Psi^{\ast}V\Psi\right ]d^3\textbf{r}</math>


(2):first we find the time derivative of energy density:
(2):first we find the time derivative of energy density:

Revision as of 15:19, 16 April 2013

(1) The energy operator in three dimensions is: so the average energy in state is:

Using the identity, we obtain

If we apply Gauss' Theorem to the first term,

as well as the condition, we obtain

(2):first we find the time derivative of energy density:

, ,

Using Schrodinger Equations: , and, ,

Also the energy flux density is: ,

So:, Hence:

Back to Relation Between the Wave Function and Probability Density