Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
(1) The energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math> | (1) The energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math> | ||
so the average energy in state <math> \ | so the average energy in state <math> \Psi </math> is: | ||
<math>\left\langle E\right\rangle=\iiint \ | <math>\left\langle E\right\rangle=\iiint \Psi^{\ast}H\Psi\,d^3\textbf{r}=\iiint \Psi^{\ast}\left (-\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi\right )\,d^3\textbf{r}</math> | ||
Using the identity, <math>\ | Using the identity, <math>\Psi^*\nabla^2\Psi=\nabla\cdot\left(\Psi^*\nabla\Psi\right)-\nabla\Psi^{\ast}\cdot\nabla\Psi,</math> we obtain | ||
<math>\left\langle E\right\rangle=-\frac{\hbar^2}{2m}\iiint\left (\nabla\cdot\left (\ | <math>\left\langle E\right\rangle=-\frac{\hbar^2}{2m}\iiint\left (\nabla\cdot\left (\Psi^{\ast}\nabla\Psi\right)-\nabla\Psi^{\ast}\cdot\nabla\Psi\right )\,d^3\textbf{r}+\iiint\Psi^{\ast}V\Psi\,d^3\textbf{r} </math> | ||
<math>=-\frac{\hbar^2}{2m}\iiint\nabla\cdot\left (\ | <math>=-\frac{\hbar^2}{2m}\iiint\nabla\cdot\left (\Psi^{\ast}\nabla\Psi\right)\,d^3\textbf{r}+\frac{\hbar^2}{2m}\iiint\nabla\Psi^{\ast}\cdot\nabla\Psi\,d^3\textbf{r}+\iiint\Psi^{\ast}V\Psi\,d^3\textbf{r}</math> | ||
If we apply Gauss' Theorem to the first term, | If we apply Gauss' Theorem to the first term, | ||
<math>-\frac{\hbar^2}{2m}\iiint\nabla\left(\ | <math>-\frac{\hbar^2}{2m}\iiint\nabla\left (\Psi^{\ast}\nabla\Psi\right )\,d^3\textbf{r}=\iint\Psi^{\ast}\nabla\Psi\cdot d\textbf{S},</math> | ||
as well as the condition, <math>\lim_{r \to \infty}\ | as well as the condition, <math>\lim_{r \to \infty}\Psi^{\ast}\nabla\Psi=0,</math> we obtain | ||
<math>\left\langle E\right\rangle=\int W\,d^3\textbf{r}=\int\left [\frac{\hbar^2}{2m}\nabla\ | <math>\left\langle E\right\rangle=\int W\,d^3\textbf{r}=\int\left [\frac{\hbar^2}{2m}\nabla\Psi^{\ast}\cdot\nabla\Psi+\Psi^{\ast}V\Psi\right ]d^3\textbf{r}</math> | ||
(2):first we find the time derivative of energy density: | (2):first we find the time derivative of energy density: |
Revision as of 15:19, 16 April 2013
(1) The energy operator in three dimensions is: so the average energy in state is:
Using the identity, we obtain
If we apply Gauss' Theorem to the first term,
as well as the condition, we obtain
(2):first we find the time derivative of energy density:
, ,
Using Schrodinger Equations: , and, ,
Also the energy flux density is: ,
So:, Hence:
Back to Relation Between the Wave Function and Probability Density