Phy5645/Problem 1D sample: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
--------------- | --------------- | ||
The | The Schrödinger equation takes the form, | ||
:<math>-\frac{\hbar^2}{2m}\frac{d^2\psi(x,y,z)}{dx^2}+\left(X(x)+Y(y)+Z(z)\right)\psi(x,y,z)=E\psi(x,y,z)</math> | :<math>-\frac{\hbar^2}{2m}\frac{d^2\psi(x,y,z)}{dx^2}+\left(X(x)+Y(y)+Z(z)\right)\psi(x,y,z)=E\psi(x,y,z).</math> | ||
Let us assume that <math>\psi</math> has the form, <math>\psi(x,y,z)=\Phi(x) \Delta(y) \Omega (z).</math> Then | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
-\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z) + \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\ | -\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z) + \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\ | ||
+ \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) &= E\Phi(x) \Delta(y) \Omega (z) | + \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) &= E\Phi(x) \Delta(y) \Omega (z). | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Dividing by <math>\psi(x,y,z) | Dividing by <math>\psi(x,y,z),</math> we obtain | ||
:<math> | :<math> | ||
Line 31: | Line 26: | ||
</math> | </math> | ||
We | We may now separate the left-hand side into three parts, each depending on only one of the three coordinates <math>x,\,y,</math> and <math>z.</math> Each of these parts must be equal to a constant. Therefore, | ||
:<math> | :<math> | ||
-\frac{\hbar^2}{2m | -\frac{\hbar^2}{2m}\frac{d^2\Phi(x)}{dx^2} + X(x)\Phi(x) = E_x\Phi(x) </math> | ||
:<math> | :<math> | ||
-\frac{\hbar^2}{2m | -\frac{\hbar^2}{2m}\frac{d^2\Delta(y)}{dy^2} + Y(y)\Delta(y) = E_y\Delta(y) </math> | ||
:<math> | :<math> | ||
-\frac{\hbar^2}{2m | -\frac{\hbar^2}{2m}\frac{d^2\Omega(z)}{dz^2} + Z(z)\Omega(z) = E_z\Omega(z), </math> | ||
where <math> E_x </math>, <math> E_y </math> and <math> E_z </math> are constants and <math> E = E_x+E_y+E_z.</math> | |||
Hence, the three-dimensional problem has been divided into three one-dimensional problems where the total energy <math> E | Hence, the three-dimensional problem has been divided into three one-dimensional problems where the total energy <math>E</math> is the sum of the energies <math> E_x </math>, <math> E_y </math> and <math> E_z </math> in each dimension. | ||
Back to [[Motion in One Dimension]] | Back to [[Motion in One Dimension]] |
Revision as of 11:44, 17 April 2013
(Submitted by team 1)
The Schrödinger equation takes the form,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\frac{d^2\psi(x,y,z)}{dx^2}+\left(X(x)+Y(y)+Z(z)\right)\psi(x,y,z)=E\psi(x,y,z).}
Let us assume that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi} has the form, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x,y,z)=\Phi(x) \Delta(y) \Omega (z).} Then
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} -\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z) + \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\ + \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) &= E\Phi(x) \Delta(y) \Omega (z). \end{align} }
Dividing by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x,y,z),}
we obtain
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x) -\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y) -\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z) = E }
We may now separate the left-hand side into three parts, each depending on only one of the three coordinates Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,\,y,} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z.} Each of these parts must be equal to a constant. Therefore,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\frac{d^2\Phi(x)}{dx^2} + X(x)\Phi(x) = E_x\Phi(x) }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\frac{d^2\Delta(y)}{dy^2} + Y(y)\Delta(y) = E_y\Delta(y) }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\frac{d^2\Omega(z)}{dz^2} + Z(z)\Omega(z) = E_z\Omega(z), }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_x } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_y } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_z } are constants and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = E_x+E_y+E_z.}
Hence, the three-dimensional problem has been divided into three one-dimensional problems where the total energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E} is the sum of the energies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_x } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_y } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_z } in each dimension.
Back to Motion in One Dimension