Phy5645/Transformations and Symmetry Problem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
===Symmetries(Problem taken from a quantum assignment in the Department of Physics, UF)===
====Problem====
Consider an <math>N</math> state system with the states labeled as <math>|1\rangle , |1\rangle , ..., |N\rangle</math>. Consider <math>N</math> to be even. Let the hamiltonian for this system be
<math>\sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n|</math>
Notice that the Hamiltonian, in this form, is manifestly hermitian. Use periodic boundary condition, i.e, <math>|N+1\rangle = |1\rangle</math>. You can think of these states as being placed around a circle.
(a) Define the translation operator, <math>T</math>  as taking <math>|1\rangle \to |2\rangle, |2\rangle \to |3\rangle ,...,|N\rangle \to |1\rangle</math> .Write T in
a form like <math>H</math> in the first equation and show that <math>T</math> is both unitary and commutes with <math>H</math> . It is thus a symmetry of the hamiltonian.
(b) Find the eigenstates of T by using wavefunctions of the form
<math>|\psi \rangle = \sum_{n=1}^{N} e^{ikn}|n\rangle</math>
What are the eigenvalues of these eigenstates? Do all these eigenstates have to be eigenstates of <math>H</math> as well? If not, do any of these eigenstates have to be eigenstates of <math>H</math>? Explain your answer.
(c) Next Consider <math>F</math> which takes <math>|n\rangle \to |N+1-n\rangle.</math> Write F in a form like <math>H</math> in the first equation and show that <math>F</math> both is unitary and commutes with <math>H</math>. It is thus a symmetry of the hamiltonian.
(d) Find a complete set of eigenstates of <math>F</math> and their eigenvalues. Do all these eigenstates have to be eigenstates of <math>H</math> as well? If not, do any of these eigenstates have to be eigenstates of <math>H</math>? Explain your answer.
====Solution====
====(a)====
====(a)====



Revision as of 11:38, 22 July 2013

(a)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T|n\rangle = |n+1\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle i|T|j\rangle = \delta_{1,j+1}.} So

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T = \sum_{n=1}^{N} |n+1\rangle\langle n|} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N+1\rangle = |1\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T^{\dagger} = \sum_{n=1}^{N} |n\rangle\langle n+1|} So

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle TT^\dagger = \sum_{m=1}^{N}\sum_{n=1}^{N}(|m+1\rangle\langle m|)(|n\rangle\langle n+1|) = \sum_{m=1}^{N}\sum_{n=1}^{N}\delta_{m,n}|m+1\rangle\langle n+1|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle TT^\dagger = \sum_{n=1}^{N}|n\rangle\langle n| = \left [ I \right ]_{NXN}}

So Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is unitary.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left [ T,H \right ] = \sum_{m=1}^{N}\sum_{n=1}^{N}[(|m+1\rangle\langle m|)(|n\rangle \langle n+1| + |n+1\rangle \langle n|) - (|n\rangle \langle n+1| + |n+1\rangle \langle n|)(|m+1\rangle\langle m|)]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N}[|n+1\rangle\langle n+1| + |n+2\rangle\langle n| - |n\rangle\langle n| - |n+1\rangle\langle n-1|]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=2}^{N+1}|n\rangle\langle n| + \sum_{n=2}^{N+1}|n+1\rangle\langle n-1| - \sum_{n=1}^{N}|n\rangle\langle n| - \sum_{n=1}^{N}|n+1\rangle\langle n-1|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N}[|n+2\rangle\langle n| - |n+1\rangle\langle n-1|]} as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N+1\rangle = |1\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 0 } So Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} commutes with the Hamiltonian.

(b)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi \rangle = \sum_{n=1}^{N} e^{ikn}|n\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T\psi \rangle = \sum_{m=1}^{N}\sum_{n=1}^{N}|m+1\rangle\langle m| e^{ikn}|n\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N}\sum_{m=1}^{N}e^{ikn}|m+1\rangle \delta{mn}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N} e^{ikn}|n+1\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = sum_{n=2}^{N+1} e^{ik(n-1)}|n\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{-ik}[\sum_{n=2}^{N} e^{ikn}|n\rangle + e^{ik(13)}|1\rangle}

Now the state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N+1\rangle \to |1\rangle} but the coefficient remains Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{13ik}} We need that to be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{ik(1)}|n\rangle}

So Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{12ik} = e^{2\pi in}}

So Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k = n\pi/6 , n = 1,2,....,11}

Hence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi\rangle} is an eigenstate of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} with eigenvalue Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{-ik}}

Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H,T} commute, any eigenstate of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is an eigenstate of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H}

explicit proof:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n| \sum_{m=1}^{N} e^{ikm}|m\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\sum_{n=1}^{N} \sum_{m=1}^{N} e^{ikm}|n\rangle \langle n+1|n\rangle + \sum_{n=1}^{N} \sum_{m=1}^{N} e^{ikm}|n+1\rangle \langle n|n\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 2\cos(k)|\psi\rangle}

So they are eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} also.

(c)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F|j\rangle = |n+1-j\rangle}

So Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = \sum_{n=1}^{N} |N+1-n\rangle\langle n|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^\dagger = \sum_{n=1}^{N} |n\rangle\langle N+1-n|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle FF^\dagger = \sum_{n=1}^{N} \sum_{m=1}^{N} |N+1-m\rangle\langle m||n\rangle\langle N+1-n|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{N} \sum_{m=1}^{N}|N+1-m\rangle \langle i|j \rangle \langle N+1-j|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 1}

So Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} is unitary.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle FH = \sum_{m=1}^{N} |N+1-m\rangle\langle n| \sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N} |N+1-n\rangle \langle n-1| + \sum_{n=1}^{N} |N+1-n\rangle \langle n+1|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle HF = \sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n| \sum_{m=1}^{N} |N+1-m\rangle\langle n|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N} |N+2-n\rangle \langle n| + \sum_{n=1}^{N} |N-n\rangle \langle n|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N} |N+1-n\rangle \langle n-1| + \sum_{n=1}^{N} |N+1-n\rangle \langle n+1|}

Hence they commute.

(d)

It has already been proved that F is both unitary and hermitian. Thus the eigenvalues of F are given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm 1}


Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F|n\rangle = |N+1-n\rangle } by intuition let us construct states given by

Failed to parse (syntax error): {\displaystyle |\psi\pm\rangle = |n\rangle \pm |N+1-n\rangle n = 1,2,3,….N/2. }

Thus thus constructed are eigenstates of F. It is noted that we have symmetric eigenstates given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1\rangle + |N\rangle ; |2\rangle + |N-1\rangle ; |3\rangle +|N-2\rangle … } and anti-symmetric eigenstates given by

Failed to parse (syntax error): {\displaystyle |1\rangle - |N\rangle ; |2\rangle - |N-1\rangle ; |3\rangle -|N-2\rangle ; … }


Thus we find that the eigenstate of F may not necessarily be eigenstates oh H. This is because F is degenerate. However there may exist linear superposition of eigenstates of F which is also an eigenstates of H and vice versa.

Back to Transformations of Operators and Symmetry