Phy5645/Transformations and Symmetry Problem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 57: Line 57:
We therefore find that the states <math>|\psi\rangle</math> are also eigenstates of <math>\hat{H}</math> with eigenvalue <math>2\cos{k}\!</math>.
We therefore find that the states <math>|\psi\rangle</math> are also eigenstates of <math>\hat{H}</math> with eigenvalue <math>2\cos{k}\!</math>.


'''(c)'''
'''(c)''' Similarly to the previous case, we may conclude from the fact that the effect of <math>\hat{F}</math> is


<math>F|j\rangle = |n+1-j\rangle</math>
<math>\hat{F}|j\rangle = |N+1-j\rangle</math>


So <math>F = \sum_{n=1}^{N} |N+1-n\rangle\langle n|</math>
that the operator may be written as


<math>F^\dagger = \sum_{n=1}^{N} |n\rangle\langle N+1-n|</math>
<math>\hat{F} = \sum_{n=1}^{N} |N+1-n\rangle\langle n|.</math>


<math>FF^\dagger = \sum_{n=1}^{N} \sum_{m=1}^{N} |N+1-m\rangle\langle m||n\rangle\langle N+1-n|</math>
The Hermitian adjoint <math>\hat{F}^{\dagger}</math> is


<math>\sum_{n=1}^{N} \sum_{m=1}^{N}|N+1-m\rangle \langle i|j \rangle \langle N+1-j|</math>
<math>\hat{F}^{\dagger} = \sum_{n=1}^{N} |n\rangle\langle N+1-n|,</math>


<math>= 1</math>
and


So <math>F</math> is unitary.
<math>\hat{F}\hat{F}^{\dagger} = \sum_{i=1}^{N} \sum_{j=1}^{N}|N+1-i\rangle \langle i|j \rangle \langle N+1-j|=\hat{I}.</math>


<math>FH = \sum_{m=1}^{N} |N+1-m\rangle\langle n| \sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n|</math>
<math>\hat{F}</math> is therefore unitary.  Let us now determine if it commutes with the Hamiltonian.
 
<math>\hat{F}\hat{H} = \sum_{m=1}^{N} |N+1-m\rangle\langle m| \sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n|)</math>


<math>= \sum_{n=1}^{N} |N+1-n\rangle \langle n-1| + \sum_{n=1}^{N} |N+1-n\rangle \langle n+1|</math>
<math>= \sum_{n=1}^{N} |N+1-n\rangle \langle n-1| + \sum_{n=1}^{N} |N+1-n\rangle \langle n+1|</math>


<math>HF = \sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n| \sum_{m=1}^{N} |N+1-m\rangle\langle n|</math>
<math>\hat{H}\hat{F} = \sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n|) \sum_{m=1}^{N} |N+1-m\rangle\langle m|</math>


<math>= \sum_{n=1}^{N} |N+2-n\rangle \langle n| + \sum_{n=1}^{N} |N-n\rangle \langle n|</math>
<math>= \sum_{n=1}^{N} |N+2-n\rangle \langle n| + \sum_{n=1}^{N} |N-n\rangle \langle n|</math>
Line 83: Line 85:
<math>= \sum_{n=1}^{N} |N+1-n\rangle \langle n-1| + \sum_{n=1}^{N} |N+1-n\rangle \langle n+1|</math>
<math>= \sum_{n=1}^{N} |N+1-n\rangle \langle n-1| + \sum_{n=1}^{N} |N+1-n\rangle \langle n+1|</math>


Hence they commute.
The expressions for <math>\hat{F}\hat{H}</math> and <math>\hat{H}\hat{F}</math> are identical, and thus they commute.


===(d)===
===(d)===

Revision as of 14:51, 23 July 2013

(a) Given the action of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}} on a state,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}|n\rangle = |n+1\rangle,}

we find that the matrix elements of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}} are

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle i|T|j\rangle = \delta_{1,j+1}.}

We may therefore write Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}} as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T} = \sum_{n=1}^{N} |n+1\rangle\langle n|,}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N+1\rangle = |1\rangle.} The Hermitian adjoint is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}^{\dagger} = \sum_{n=1}^{N} |n\rangle\langle n+1|,}

so

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}\hat{T}^\dagger = \sum_{m=1}^{N}\sum_{n=1}^{N}(|m+1\rangle\langle m|)(|n\rangle\langle n+1|) = \sum_{m=1}^{N}\sum_{n=1}^{N}\delta_{m,n}|m+1\rangle\langle n+1|= \sum_{n=1}^{N}|n\rangle\langle n| = \hat{I}.}

We have thus shown that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}} is unitary.

Let us now find the commutator of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}} with the Hamiltonian.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\hat{T},\hat{H}] = \sum_{m=1}^{N}\sum_{n=1}^{N}[(|m+1\rangle\langle m|)(|n\rangle \langle n+1| + |n+1\rangle \langle n|) - (|n\rangle \langle n+1| + |n+1\rangle \langle n|)(|m+1\rangle\langle m|)]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N}[|n+1\rangle\langle n+1| + |n+2\rangle\langle n| - |n\rangle\langle n| - |n+1\rangle\langle n-1|]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=2}^{N+1}|n\rangle\langle n| + \sum_{n=2}^{N+1}|n+1\rangle\langle n-1| - \sum_{n=1}^{N}|n\rangle\langle n| - \sum_{n=1}^{N}|n+1\rangle\langle n-1|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N}[|n+2\rangle\langle n| - |n+1\rangle\langle n-1| = 0 }

Therefore, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}} commutes with the Hamiltonian.

(b) Let us act on the state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}:}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}|\psi \rangle = \sum_{n=1}^{N} e^{ikn}|n\rangle= \sum_{n=1}^{N} e^{ikn}|n+1\rangle=\sum_{n=2}^{N+1}e^{ik(n-1)}|n\rangle=e^{-ik}\left [\sum_{n=2}^{N} e^{ikn}|n\rangle + e^{ik(N+1)}|1\rangle\right ]}

The expression in the brackets is almost Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle,} except that the state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1\rangle} in general has the "wrong" coefficient. We may obtain the correct coefficient, and thus an eigenstate of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T},} if

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{ikN} = 1.\!}

This is satisfied if

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=\frac{2\pi n}{N},}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq n<N} is an integer. This range of values gives all of the unique eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T},} each with eigenvalue Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{-ik}.\!}

We may show that these are also eigenstates of the Hamiltonian, as follows:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H}|\psi\rangle=\sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n|) \sum_{m=1}^{N} e^{ikm}|m\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sum_{n=1}^{N} e^{ik(n+1)}|n\rangle + \sum_{n=1}^{N} e^{ikn}|n+1\rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 2\cos{k}|\psi\rangle}

We therefore find that the states Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle} are also eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H}} with eigenvalue Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cos{k}\!} .

(c) Similarly to the previous case, we may conclude from the fact that the effect of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}} is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}|j\rangle = |N+1-j\rangle}

that the operator may be written as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F} = \sum_{n=1}^{N} |N+1-n\rangle\langle n|.}

The Hermitian adjoint Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}^{\dagger}} is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}^{\dagger} = \sum_{n=1}^{N} |n\rangle\langle N+1-n|,}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}\hat{F}^{\dagger} = \sum_{i=1}^{N} \sum_{j=1}^{N}|N+1-i\rangle \langle i|j \rangle \langle N+1-j|=\hat{I}.}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}} is therefore unitary. Let us now determine if it commutes with the Hamiltonian.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}\hat{H} = \sum_{m=1}^{N} |N+1-m\rangle\langle m| \sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n|)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N} |N+1-n\rangle \langle n-1| + \sum_{n=1}^{N} |N+1-n\rangle \langle n+1|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H}\hat{F} = \sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n|) \sum_{m=1}^{N} |N+1-m\rangle\langle m|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N} |N+2-n\rangle \langle n| + \sum_{n=1}^{N} |N-n\rangle \langle n|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N} |N+1-n\rangle \langle n-1| + \sum_{n=1}^{N} |N+1-n\rangle \langle n+1|}

The expressions for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}\hat{H}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H}\hat{F}} are identical, and thus they commute.

(d)

It has already been proved that F is both unitary and hermitian. Thus the eigenvalues of F are given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm 1}


Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F|n\rangle = |N+1-n\rangle } by intuition let us construct states given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\pm\rangle = |n\rangle \pm |N+1-n\rangle n = 1,2,3,….N/2. }

Thus thus constructed are eigenstates of F. It is noted that we have symmetric eigenstates given by

Failed to parse (syntax error): {\displaystyle |1\rangle + |N\rangle ; |2\rangle + |N-1\rangle ; |3\rangle +|N-2\rangle … } and anti-symmetric eigenstates given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1\rangle - |N\rangle ; |2\rangle - |N-1\rangle ; |3\rangle -|N-2\rangle ; … }


Thus we find that the eigenstate of F may not necessarily be eigenstates oh H. This is because F is degenerate. However there may exist linear superposition of eigenstates of F which is also an eigenstates of H and vice versa.

Back to Transformations of Operators and Symmetry