Phy5645/Square Wave Potential Problem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Case 1:''' <math>~E>0</math>
Let us once again confine our attention to the region, <math>0 < x < a.\!</math> The wave function for this region is given by


let  <math> k = \frac{\sqrt{2mE}}{\hbar}</math>
<math>\psi_k(x)=
\begin{cases}
Ae^{ik_1x}+Be^{-ik_1x}, & 0 < x < c \\
Ce^{ik_2x}+De^{-ik_2x}, & c < x < a,
\end{cases}
</math>


then
where <math>k_1=\frac{\sqrt{2mE}}{\hbar}</math> and <math>k_2=\frac{\sqrt{2m(E-V_0)}}{\hbar}.</math>


<math>\frac{d^2 \psi}{dx^2}= -k^2 \psi </math>
By Bloch's theorem, the full wave function must have the form,


whose general solution is:
:<math>\psi_k(x)=e^{ikx}u_k(x).\!</math>


<math> ~\psi(x) = A sin(kx) +B cos(kx) , (0<x<a) </math>
Continuity of <math>\psi_k(x)\!</math> and <math>\psi'_k(x)\!</math> at <math>x=c\!</math> requires that


by Bloch's theorem , the wave function in the cell immediately to the left of the origin:
:<math> Ae^{ik_1c}+Be^{-ik_1c}=Ce^{ik_2c}+De^{-ik_2c}\!</math>


<math> \psi(x) = e^{-i\kappa a} \left(A sin(k(x+a)) + B cos(k(x+a)) \right) , ~(0<x<a) </math>
and


at <math>~x=0</math> <math>~\psi</math> must be continuous across; so:
:<math> ik_1(Ae^{ik_1c}-Be^{-ik_1c})=ik_2(Ce^{ik_2c}-De^{-ik_2c}).\!</math>


<math> B = e^{-i\kappa a} \left(A sin(k a) + B cos( k a) \right)</math>
The periodicity of <math>u_k(x)\!</math> and continuity of <math>\psi_k(x)\!</math> and <math>\psi'_k(x)\!</math> at <math>x=a\!</math> gives us


and the derivative of the wave function suffers a discontinuity proportional the "strength" of the delta function:
:<math>Ce^{ik_2a}+De^{-ik_2a}=e^{ika}(A+B)\!</math>


<math>ka - e^{-i\kappa a}\left( A cos(k a) + B Sin(ka) \right) = \frac{-2m \alpha}{\hbar^2} B </math>
and


therefore
:<math>ik_2(Ce^{ik_2a}-De^{-ik_2a})=ik_1e^{ika}(A-B).\!</math>


<math>A sin(ka) = \left(e^{i\kappa a} - cos (ka) \right) B</math>
We have thus obtained four linear equations in <math>A,\!</math> <math>B,\!</math> <math>C,\!</math> and <math>D.\!</math> To derive the condition under which these equations have a nontrivial solution, we first eliminate <math>C\!</math> and <math>D\!</math> and then determine when the resulting <math>2\times 2\!</math> system has nontrivial solutions; this yields the condition,


the derivative suffers from a discontinuity  proportional to the strength of the delta function:
:<math>\cos{ka}=\cos{k_1 c}\cos{k_2 b}-\frac{k_1^2+k_2^2}{2k_1k_2}\sin{k_1 c}\sin{k_2 b},</math>


<math> \rho A - e^{-i\kappa a}\rho\left(A cosh(\rho a) + B sinh(\rho a) \right) = \frac{2m \alpha}{\hbar^2} </math>
where <math>b=a-c\!</math> is the width of the "barrier" parts of the potential.  This, along with the equation,


which implies
<math>k_1^2-k_2^2=\frac{2mV_0}{\hbar^2},</math>


<math> \left(e^{i\kappa a}-cos(ka) \right)\left(1- e^{-i\kappa a}cos(ka)\right) + e^{-i\kappa a}sin^2(ka) = \frac{-2m\alpha}{\hbar^2 k} sin(ka) </math>
yields the energy spectrum of the system.


finally
If we take the limit <math> V_0 \rightarrow \infty \!</math> and <math> b \rightarrow 0 \!</math> in such a way as to keep <math>V_0b\!</math> finite, then we can obtain:


<math> cos(\kappa a) = cos(ka) + \frac{m \alpha}{\hbar^2 k}sin(ka)</math>
:<math>-ik_2 b=-i\sqrt{\frac{2m}{\hbar^2}(E-V_0)b^2}\approx \sqrt{\frac{2mb}{\hbar^2}(V_0b)}\ll 1</math>


'''Case 2:''' <math>~E<0</math> and <math>~0<x<a</math>
In this limit,


<math> \frac{-\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E \psi </math>
:<math>\sin{k_2b}\approx k_2b </math>


<math>\frac{d^2 \psi}{dx^2} = \rho^2 \psi </math>
and


where
:<math>\cos{k_2b}\approx 1.</math>


<math> \rho = \frac{\sqrt{-2mE}}{\hbar} </math>
Our equations then reduce to, noting that <math>c=a\!</math> in this limit,


the general solution is:
:<math>\cos(ka)=\cos(k_1a)+\frac{mV_0ab}{\hbar^2}\frac{\sin(k_1a)}{k_1a}.</math>


<math>~\psi(x) = A sinh(\rho x) + B cosh(\rho x) </math> for <math>0<x<a\!</math>
This is just the equation that we obtained for the Dirac comb potential; note that, here, <math>V_0b\!</math> stands for the <math> V_0\!</math> in the Dirac comb problem described earlier.
 
by Bloch's theorem the solution on <math>-a<x<0\!</math> is
 
<math> \psi(x) = e^{-i\kappa a}\left( A sinh(\rho(x+a)) B \cosh(\rho(x+a)) \right) </math>
 
for <math>\psi(x)\!</math> to be continuous  at <math>x=0</math>
 
<math> B = e^{-i\kappa a} \left( A sinh(\rho a) + B \cosh(\rho a) \right) </math>
 
which implies
 
<math> A sinh(\rho a )  = B \left( e^{i\kappa a} - cosh(\rho a) \right) </math>
 
which implies
 
<math> A \left( 1- e^{-i\kappa a} cosh(\rho a) \right) = B\left( \frac{2 m \alpha}{\hbar^2 \rho} + e^{-i \kappa a}sinh(\rho a) \right)</math>
 
by substitution:
 
<math> (e^{i \kappa } - cosh(\rho a) )(1- e^{-i \kappa a} cosh(\rho a)) = \frac{ 2m \alpha}{\hbar^2 \rho} sinh(\rho a)+ e^{-i \kappa a}sinh^2(\rho a) </math>
 
<math> e^{i\kappa a} - 2 cosh{\rho a} + e^{-i\kappa a} cosh^2(\rho a) - e^{-i \kappa a} sinh^2(\rho a) = \frac{ 2m \alpha}{\hbar^2 \rho} sinh(\rho a) </math>
 
<math>e ^{i\kappa a}+e^{-i\kappa a} = 2 cosh(\rho a) + \frac{2m \alpha}{\hbar^2\rho}sinh(\rho a) </math>
 
<math>cos(\kappa a) = cosh(\rho a) + \frac{m \alpha}{\hbar^2 \rho} sinh(\rho a) </math>


Back to [[Motion in a Periodic Potential]]
Back to [[Motion in a Periodic Potential]]

Revision as of 16:07, 6 August 2013

Let us once again confine our attention to the region, The wave function for this region is given by

where and

By Bloch's theorem, the full wave function must have the form,

Continuity of and at requires that

and

The periodicity of and continuity of and at gives us

and

We have thus obtained four linear equations in and To derive the condition under which these equations have a nontrivial solution, we first eliminate and and then determine when the resulting system has nontrivial solutions; this yields the condition,

where is the width of the "barrier" parts of the potential. This, along with the equation,

yields the energy spectrum of the system.

If we take the limit and in such a way as to keep finite, then we can obtain:

In this limit,

and

Our equations then reduce to, noting that in this limit,

This is just the equation that we obtained for the Dirac comb potential; note that, here, stands for the in the Dirac comb problem described earlier.

Back to Motion in a Periodic Potential