Phy5645/AngularMomentumProblem: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
We | We first rewrite the wave vector in Dirac notation: | ||
<math>|\psi | <math>|\psi\rangle=\frac{1}{\sqrt{5}}|1,-1\rangle+\sqrt{\frac{3}{5}}|1,0\rangle+1/\sqrt{5}|1,1\rangle</math> | ||
<math> | We see that the possible results for a measurement of <math>\hat{L}_z</math> are <math>-\hbar,</math> <math>0,\!</math> and <math>\hbar.</math> | ||
<math> | The probablity for obtaining <math>-\hbar</math> is | ||
<math>P(-\hbar)=|\langle 1,-1|\psi\rangle|^2=\left |\frac{1}{\sqrt{5}}\langle 1,-1|1,-1\rangle+\sqrt{\frac{3}{5}}\langle 1-1|1,0\rangle+\frac{1}{\sqrt{5}}\langle 1,-1|1,1\rangle\right |^2=\tfrac{1}{5}.</math> | |||
<math> | Similarly, the probablites of obtaining <math>0\!</math> and <math>\hbar</math> are | ||
<math>=1 | <math>P(0)=|\langle 1,0|\psi\rangle|^2=\tfrac{3}{5}</math> | ||
and | |||
<math> | <math>P(\hbar)=|\langle 1,1|\psi\rangle|^2=\tfrac{1}{5}.</math> | ||
Now we will calculate the uncertainties <math>\Delta L_x</math> and <math>\Delta L_y</math> and the product <math>\Delta L_x \Delta L_y</math> | Now we will calculate the uncertainties <math>\Delta L_x</math> and <math>\Delta L_y</math> and the product <math>\Delta L_x \Delta L_y</math> |
Revision as of 22:52, 29 August 2013
We first rewrite the wave vector in Dirac notation:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle=\frac{1}{\sqrt{5}}|1,-1\rangle+\sqrt{\frac{3}{5}}|1,0\rangle+1/\sqrt{5}|1,1\rangle}
We see that the possible results for a measurement of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{L}_z} are Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\hbar,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0,\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar.}
The probablity for obtaining Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\hbar} is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(-\hbar)=|\langle 1,-1|\psi\rangle|^2=\left |\frac{1}{\sqrt{5}}\langle 1,-1|1,-1\rangle+\sqrt{\frac{3}{5}}\langle 1-1|1,0\rangle+\frac{1}{\sqrt{5}}\langle 1,-1|1,1\rangle\right |^2=\tfrac{1}{5}.}
Similarly, the probablites of obtaining Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar} are
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(0)=|\langle 1,0|\psi\rangle|^2=\tfrac{3}{5}}
and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(\hbar)=|\langle 1,1|\psi\rangle|^2=\tfrac{1}{5}.}
Now we will calculate the uncertainties Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta L_x} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta L_y} and the product Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta L_x \Delta L_y}
After measuring Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l_z=-\hbar} the system will be in the eigenstate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |lm>=|1,-1>} , that is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(\theta,\phi)=Y_1,_-1(\theta,|\phi)} . We will first calculate the expectation values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_x, L_y, L^2_x, L^2_y} using Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1,-1>} . Symmetry requires Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <1,-1|L_x|1,-1>=<1,-1|L_y|1,-1>=0} . Using the relation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l-1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=-1} ;
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <L^2_x>=<L^2_y>=1/2[<L^2>-<L^2_z>]=\hbar^2/2[l(l+1)-m^2]=\hbar^2/2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta L_x=\sqrt{<L^2_x>}=\hbar/\sqrt{2}=\Delta L_y}
Therefore;
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta L_x \Delta L_y=\sqrt{<L^2_x><L^2_y>}=\hbar^2/2}