Phy5645/HydrogenAtomProblem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
(Submitted by Team 6)
'''(a)''' Take the volume integral of  <math>\psi\psi*</math>.  <math>Y_{1,-1}\left(\theta, \phi  
 
Take the volume integral of  <math>\psi\psi*</math>.  <math>Y_{1,-1}\left(\theta, \phi  
\right) = \sqrt{\frac{3}{8\pi}}sin(\theta)e^{-i\phi} </math> and as such the  
\right) = \sqrt{\frac{3}{8\pi}}sin(\theta)e^{-i\phi} </math> and as such the  
phi dependence in the integral vanishes :
phi dependence in the integral vanishes :
Line 17: Line 15:
Therefore <math>N^{2}\left(24a^{5}\right) = 1 </math> so <math>N = \sqrt\frac{1}{24a^5}</math>
Therefore <math>N^{2}\left(24a^{5}\right) = 1 </math> so <math>N = \sqrt\frac{1}{24a^5}</math>


'''(b)What is the probability per unit volume of finding the electron at''' <math> r = a_{o},  \theta = 45^{\circ}, \phi = 60^{\circ}? </math>
'''(b)'''


<math>\psi\psi* = N^{2}r^{2}sin^{2}(\theta)\left(\frac{3}{8\pi}\right)e^{-
<math>\psi\psi* = N^{2}r^{2}sin^{2}(\theta)\left(\frac{3}{8\pi}\right)e^{-

Revision as of 23:28, 1 September 2013

(a) Take the volume integral of . and as such the phi dependence in the integral vanishes :

Therefore so

(b)


(c) What is the probability per unit radial interval (dr) of finding the electron at

Average over and at

(d) If and are made, what will the results be?

l=1, m = -1 are the l and m of the eigenstate

Back to Hydrogen Atom