Phy5645/Hydrogen Atom WKB: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The approximation is | The WKB approximation is given by | ||
<math>\ | <math>\int_{r_1}^{r_2} p(r)\,dr=(n+\tfrac{1}{2})\pi \hbar,</math> | ||
where | |||
<math> | <math>p(r)=\sqrt {2m(E-V_{\text{eff}}(r))} =\sqrt {2m\left (E+\frac{e^{2}}{r}-{\frac{\hbar ^{2}(l+\tfrac{1}{2})^2}{2mr^{2}}}\right )}.</math> | ||
<math>\sqrt {2mE} \ | We may rewrite the above as | ||
<math> | <math>\sqrt{2mE}\int_{r_1}^{r_2}\sqrt{1-\frac{\hbar^{2}(l+\tfrac{1}{2})^2}{2mEr^{2}}+\frac{e^{2}}{Er}}\,dr=(n+\tfrac{1}{2})\pi \hbar,</math> | ||
or, making the substitution, | |||
<math>T=-\frac{\hbar^{2}(l+\tfrac{1}{2})}{2mE}</math> and <math>V=\frac{e^{2}}{E},</math> | |||
<math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1+\frac{T}{r^{2}}}+\frac{V}{r})^{1/2}dr=(n+\frac{1}{2})\pi \hbar \text{ }</math> | <math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1+\frac{T}{r^{2}}}+\frac{V}{r})^{1/2}dr=(n+\frac{1}{2})\pi \hbar \text{ }</math> |
Revision as of 02:43, 13 January 2014
The WKB approximation is given by
where
We may rewrite the above as
or, making the substitution,
and
Then if we finally pull out E,
Back to WKB in Spherical Coordinates