Phy5645/Hydrogen Atom WKB: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
The approximation is:
The WKB approximation is given by


<math>\int {P(r)} dr=(n+\frac{1}{2})\pi \hbar</math>
<math>\int_{r_1}^{r_2} p(r)\,dr=(n+\tfrac{1}{2})\pi \hbar,</math>


<math>\text{P(r)=}\sqrt {2m(E-V(r))} =\sqrt {2m(E-\left ({\frac{\hbar ^{2}l(l+1)}{2mr^{2}}-\frac{e^{2}}{r}} \right )} )</math>
where


<math>\int\limits_{r1}^{r2} {\sqrt {2m(E-\frac{\hbar ^{2}l(l+1)}{2mr^{2}}+\frac{e^{2}}{r})} }dr=(n+\frac{1}{2})\pi \hbar </math> where r1 and r2 are turning points in this case.
<math>p(r)=\sqrt {2m(E-V_{\text{eff}}(r))} =\sqrt {2m\left (E+\frac{e^{2}}{r}-{\frac{\hbar ^{2}(l+\tfrac{1}{2})^2}{2mr^{2}}}\right )}.</math>


<math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1-}\frac{\hbar ^{2}l(l+1)}{2mr^{2}E}+\frac{e^{2}}{Er})^{1/2}dr=(n+\frac{1}{2})\pi \hbar </math>
We may rewrite the above as
if we do this substitution:
 
<math>\text{let T=}-\frac{\hbar ^{2}l(l+1)}{2mE}\text{  and V=}-\frac{e^{2}}{r}\text{    }</math>
<math>\sqrt{2mE}\int_{r_1}^{r_2}\sqrt{1-\frac{\hbar^{2}(l+\tfrac{1}{2})^2}{2mEr^{2}}+\frac{e^{2}}{Er}}\,dr=(n+\tfrac{1}{2})\pi \hbar,</math>
 
or, making the substitution,
 
<math>T=-\frac{\hbar^{2}(l+\tfrac{1}{2})}{2mE}</math> and <math>V=\frac{e^{2}}{E},</math>


<math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1+\frac{T}{r^{2}}}+\frac{V}{r})^{1/2}dr=(n+\frac{1}{2})\pi \hbar \text{ }</math>
<math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1+\frac{T}{r^{2}}}+\frac{V}{r})^{1/2}dr=(n+\frac{1}{2})\pi \hbar \text{ }</math>

Revision as of 02:43, 13 January 2014

The WKB approximation is given by

where

We may rewrite the above as

or, making the substitution,

and

Then if we finally pull out E,

Back to WKB in Spherical Coordinates