|
|
Line 15: |
Line 15: |
| <math>T=-\frac{\hbar^{2}(l+\tfrac{1}{2})}{2mE}</math> and <math>V=\frac{e^{2}}{E},</math> | | <math>T=-\frac{\hbar^{2}(l+\tfrac{1}{2})}{2mE}</math> and <math>V=\frac{e^{2}}{E},</math> |
|
| |
|
| <math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1+\frac{T}{r^{2}}}+\frac{V}{r})^{1/2}dr=(n+\frac{1}{2})\pi \hbar \text{ }</math> | | <math>\sqrt{2mE}\int_{r_1}^{r_2}\sqrt{1-\frac{V}{r}+\frac{T}{r^{2}}}\,dr=(n+\tfrac{1}{2})\pi \hbar.</math> |
|
| |
|
| <math>\text{the relation r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)</math> | | Using the fact that <math>r^{2}-Vr+T=(r_{1}-r)(r_{2}-r)\!</math> and |
|
| |
|
| <math>\sqrt {2mE} \int\limits_{r1}^{r2} {\left ({\frac{(r_{1}-r)(r_{2}-r)}{r^{2}}} \right )^{1/2}dr=(n+\frac{1}{2})\pi \hbar }</math> | | <math>\sqrt {2mE} \int\limits_{r1}^{r2} {\left ({\frac{(r_{1}-r)(r_{2}-r)}{r^{2}}} \right )^{1/2}dr=(n+\frac{1}{2})\pi \hbar }</math> |
Revision as of 02:45, 13 January 2014
The WKB approximation is given by
where
We may rewrite the above as
or, making the substitution,
and
Using the fact that
and
Then if we finally pull out E,
Back to WKB in Spherical Coordinates