Phy5645/Hydrogen Atom WKB: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 23: Line 23:
we obtain
we obtain


<math>\frac{\pi}{2}\sqrt {2mE}(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\tfrac{1}{2})\pi \hbar,</math>
<math>\frac{\pi}{2}\sqrt {2mE}(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\tfrac{1}{2})\pi \hbar.</math>


<math>\sqrt {2mE} *\frac{\pi }{2}*(r_{2}+r_{1}-2\sqrt {r_{1}r_{2}} )=(n+\frac{1}{2})\pi \hbar </math>
We now observe that <math>r^{2}-Vr+T=(r_{1}-r)(r_{2}-r)=r^{2}-(r_{1}+r_{2})r+r_{1}r_{2},\!</math> so that


<math>\text{let r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)=r^{2}-(r_{1}+r_{2})+r_{1}r_{2}</math>
<math>V=r_{1}+r_{2}\!</math> and <math>T=r_{1}r_{2}.\!</math>


<math>\text{so V=}(r_{1}+r_{2})\text{  and T=}r_{1}r_{2}</math>
We thus obtain


<math>\sqrt {2mE} *\frac{\pi }{2}*(V-2\sqrt {T} )=(n+\frac{1}{2})\pi \hbar </math>
<math>\frac{\pi }{2}\sqrt {2mE}(V-2\sqrt {T} )=(n+\tfrac{1}{2})\pi \hbar,</math>


<math>\sqrt {2mE} \left ({-\frac{e^{2}}{E}-2\sqrt {-\frac{\hbar ^{2}l(l+1)}{2mE}} } \right )=(n+\frac{1}{2})\pi \hbar </math>
or


<math>-e^{2}\sqrt {\frac{2m}{E}} -2\sqrt {\hbar ^{2}l(l+1)} =2\hbar (n+\frac{1}{2})</math>
<math>\sqrt {2mE} \left ({-\frac{e^{2}}{E}-2\sqrt {-\frac{\hbar ^{2}(l+\tfrac{1}{2})^2}{2mE}} } \right )=(n+\tfrac{1}{2})\pi \hbar.</math>


<math>\text{ }2\hbar (n+\frac{1}{2})+2\hbar \sqrt {l(l+1)} =e^{2}\sqrt {\frac{2m}{-E}} </math>
This equation simplifies to


<math>\frac{4\hbar ^{2}\left ({n+\frac{1}{2}+\sqrt {l(l+1)} } \right )^{2}}{2me^{4}}=\frac{1}{-E}\text{ }</math>
<math>-e^{2}\sqrt {-\frac{2m}{E}} -(2\ell+1)\hbar =(2n+1)\hbar.</math>


Then if we finally pull out E,
We may now easily solve for <math>E,\!</math> obtaining


<math>\text{E=}\frac{-me^{4}}{2\hbar ^{2}\left ({n+\frac{1}{2}+\sqrt {l(l+1)} } \right )^{2}}</math>
<math>E=-\frac{me^{4}}{2\hbar ^{2}(n+\ell+1)^{2}}.</math>
 
Note that this is exactly the spectrum that we would obtain from an exact solution of the Coulomb problem.


Back to [[WKB in Spherical Coordinates]]
Back to [[WKB in Spherical Coordinates]]

Revision as of 02:59, 13 January 2014

The WKB approximation is given by

where

We may rewrite the above as

or, making the substitution,

and

Using the fact that and that

we obtain

We now observe that so that

and

We thus obtain

or

This equation simplifies to

We may now easily solve for obtaining

Note that this is exactly the spectrum that we would obtain from an exact solution of the Coulomb problem.

Back to WKB in Spherical Coordinates