Matrix: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: ==Vectors== A vector <math>\overrightarrow v = v_1\hat i + v_2\hat j + v_3\hat k\!</math> has the matrix representation <math>\overrightarrow v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end...)
 
No edit summary
Line 1: Line 1:
==Vectors==
==Basics==


A vector
===Identity Matrix===
The identity matrix, <math>I</math>, is defined as the matrix that satisfies the condition


<math>\overrightarrow v = v_1\hat i + v_2\hat j + v_3\hat k\!</math>
<math>IA = A\!</math>
 
For any m-by-n matrix <math>A</math>.
 
For example the identity matrix in '''R''' <sup>'''3'''</sup>
 
<math>\mathbf{I}_3 =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
</math>
 
 
===Vectors===
A three diemensional vector
 
<math>\overrightarrow v_3 = v_1\hat i + v_2\hat j + v_3\hat k\!</math>


has the matrix representation
has the matrix representation


<math>\overrightarrow v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}</math>
<math>\overrightarrow v_3 = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}</math>


Or more generally, an n-diemensional vector has the matrix form
Or more generally, an n-diemensional vector has the matrix form


<math>\overrightarrow v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}</math>
<math>\overrightarrow v_n = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}</math>
 
==Eigenvalue Analysis==

Revision as of 23:48, 12 February 2009

Basics

Identity Matrix

The identity matrix, , is defined as the matrix that satisfies the condition

For any m-by-n matrix .

For example the identity matrix in R 3


Vectors

A three diemensional vector

has the matrix representation

Or more generally, an n-diemensional vector has the matrix form

Eigenvalue Analysis