Matrix: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
Line 31: Line 31:


<math>\overrightarrow v_n = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}</math>
<math>\overrightarrow v_n = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}</math>
===Determinants===
The determinant of a 2-by-2 matrix
<math>A =
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
</math>
is
<math>det \mathit{A} =
\begin{vmatrix}
a & b \\
c & d \\
\end{vmatrix}
= ad - bc
</math>


==Eigenvalue Analysis==
==Eigenvalue Analysis==

Revision as of 23:53, 12 February 2009

Basics

Identity Matrix

The identity matrix, , is defined as the matrix that satisfies the condition

For any m-by-n matrix .

For example the identity matrix in R 3


Vectors

A three diemensional vector

has the matrix representation

Or more generally, an n-diemensional vector has the matrix form

Determinants

The determinant of a 2-by-2 matrix

is

Eigenvalue Analysis