|
|
Line 38: |
Line 38: |
| \end{vmatrix} | | \end{vmatrix} |
| </math> | | </math> |
| | |
| | Running waves through a solid |
|
| |
|
| <math>u_m (t) = e^{ik(na)- \omega t} = e^{i k R_n} \;</math> | | <math>u_m (t) = e^{ik(na)- \omega t} = e^{i k R_n} \;</math> |
Line 55: |
Line 57: |
| * '''Index<math>\alpha = 2\;</math> for optical branch''' | | * '''Index<math>\alpha = 2\;</math> for optical branch''' |
|
| |
|
| <math>u(R_n) \equiv e^{i k R_n} = cos (k a) \;<> | | <math>u_m (t) = e^{ik(na)- \omega t} = e^{i k R_n} \;</math> |
|
| |
|
| <math>u_m (t) = e^{ik(na)- \omega t} = e^{i k R_n} \;</math> | | <math>u(R_n) \equiv e^{i k R_n} = cos (k a) \;</math> |
|
| |
|
| <math>\Rightarrow - m \omega^2 e^{ikna} = -k [2e^{ik(na)} - e^{ik(n+1)a} - e^{ik(n-1)a}] \;</math> | | <math>\Rightarrow - m \omega^2 e^{ikna} = -k [2e^{ik(na)} - e^{ik(n+1)a} - e^{ik(n-1)a}] \;</math> |
|
| |
|
| <math>\Rightarrow m \omega^2 = k [2 - (e^{ika} + e^{-ika}] \;</math> | | <math>\Rightarrow m \omega^2 = k [2 - (e^{ika} + e^{-ika})] \;</math> |
|
| |
|
| <math>\Rightarrow \omega^2 = \frac{2k}{m} [1 - cos(ka)] \;</math> | | <math>\Rightarrow \omega^2 = \frac{2k}{m} [1 - cos(ka)] \;</math> |
I have no idea what I'm doing - KimberlyWynne 03:11, 2 March 2009 (EST)
Diatomic harmonic chain
Problem 1
Given:
- a chain of atoms
- with alternating masses
and 
- connected with elastic springs with constant

- moving only in the x-direction
Derive the dispersion relation
for this chain
- Index
for acoustic branch
Potential Energy
Eigenvectors of Modes A and B (defined arbitrarily)
Band Matrix
Running waves through a solid
where
= distance on some coordinate system
Derive and get:
- Index
for optical branch
Problem 2
Determine the speed of sound for this chain. What is the lowest frequency of long-wavelength sound corresponding to the optical branch?
From my lecture notes:
where
= speed of sound
Problem 3
Sketch the motion of the atoms corresponding to the edge of the Brillouin zone, both for the optical and the acoustic branch.
Problem 4
Determine the Debye temperature for this system, and determine the form of the specific heat
in the limits of high and low temperatures.
Problem 5
Consider low temperatures (
) and determine the wavelength of the most abundant phonons
(Hint: note the analogy with Wien's Law!)