Solution to Set 6: Difference between revisions
(Begin) |
MatthewHoza (talk | contribs) |
||
Line 17: | Line 17: | ||
a) Sketch a setup used to measure the Hall effect. Label each part. | a) Sketch a setup used to measure the Hall effect. Label each part. | ||
[[Image:Hall_Effect.jpg|center|frameless|400px]] | |||
b) A semiconductor crystal is 5 mm long, 4 mm wide, and 2 mm thick. A 40mA current flows across the length of the sample after a 2-V battery is connected to the ends. When a 0.1T magnetic field is applied perpendicular to the large surface of the specimen, a Hall voltage of 15mV develops across the width of the sample. Determine the i) conductivity, ii) carrier density, iii) mobility, iv) Fermi velocity, for this semiconductor. | b) A semiconductor crystal is 5 mm long, 4 mm wide, and 2 mm thick. A 40mA current flows across the length of the sample after a 2-V battery is connected to the ends. When a 0.1T magnetic field is applied perpendicular to the large surface of the specimen, a Hall voltage of 15mV develops across the width of the sample. Determine the i) conductivity, ii) carrier density, iii) mobility, iv) Fermi velocity, for this semiconductor. | ||
==Problem 4== | ==Problem 4== |
Revision as of 19:04, 30 March 2009
Problem 1.
Aluminum is trivalent with atomic weight of 27 and a density of 2.7 . At room temperature the mean free time between electron collisions is s.
a) Calculate the resistivity of aluminum at room temperature.
b) If a 2-V voltage is applied to the ends of an aluminum wire 10 m long and with a cross- sectional area of , what is the current flowing through it?
Problem 2
The resistivity of a certain material at room temperature is 0.02 Wm and the Hall coefficient is . An electric field of 1 V/m is applied across it. Deduce all the information you can think of about this material.
Problem 3.
a) Sketch a setup used to measure the Hall effect. Label each part.
b) A semiconductor crystal is 5 mm long, 4 mm wide, and 2 mm thick. A 40mA current flows across the length of the sample after a 2-V battery is connected to the ends. When a 0.1T magnetic field is applied perpendicular to the large surface of the specimen, a Hall voltage of 15mV develops across the width of the sample. Determine the i) conductivity, ii) carrier density, iii) mobility, iv) Fermi velocity, for this semiconductor.
Problem 4
a) Derive the expressions for the Fermi energy, Fermi velocity, and electronic density of states for a two-dimensional free electron gas.
b) A 2D electron gas formed in a GaAs/AlGaAs quantum well has a density of . Assuming that the electrons there have the free electron mass, calculate the Fermi energy and Fermi velocity.