Dirac equation: Difference between revisions
No edit summary |
|||
Line 40: | Line 40: | ||
<math>E=c \vec \alpha \vec p +\beta mc^2</math> | <math>E=c \vec \alpha \vec p +\beta mc^2</math> | ||
Substituting all quantities by | Substituting all quantities by their corresponding operators, we obtain Dirac equation: | ||
<math>i \hbar \frac {\partial \psi}{\partial t}=H \psi</math> | <math>i \hbar \frac {\partial \psi}{\partial t}=H \psi</math> |
Revision as of 20:56, 18 April 2009
How to construct
Starting from the relativistic relation between energy and momentum:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E^2=\vec p \; ^{2}c^2+m^2c^4}
or
From this equation we can not directly replace by the corresponding operators since we don't have the definition for the square root of an operator. Therefore, first we need to linearize this equation as follows:
where and are some operators independent of .
From this it follows that:
Expanding the right hand side and comparing it with the left hand side, we obtain the following conditions for and :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha _{i}^2=\beta ^2=1}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \alpha_ {i}\alpha_ {j}+\alpha_ {j}\alpha_ {i}=\{\alpha_ {i},\alpha_ {j}\}=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \alpha_ {i} \beta+\alpha_ {j} \beta=\{\alpha_ {i},\beta\}=0}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1,2,3} corresponds to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x, y, z}
In order to describe both particle (positive energy state) and antiparticle (negative energy state); spin-up state and spin-down state, the wave function must have 4 components and all operators acting on such states correspond to 4 by 4 matrices. Therefore, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \alpha _{x},\alpha _{y},\alpha _{z}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \beta} are 4 by 4 matrices. It is convention that these matrices are given as follows (in the form of block matrices for short):
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_{x}=\left(\begin{array}{cc}0& \sigma_{x}\\ \sigma_{x}&0\end{array}\right)} ; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \qquad \alpha_{y}=\left(\begin{array}{cc}0& \sigma_{y}\\ \sigma_{y}&0\end{array}\right)} ; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \qquad \alpha_{z}=\left(\begin{array}{cc}0& \sigma_{z}\\ \sigma_{z}&0\end{array}\right)} ; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \qquad \beta= \left(\begin{array}{cc}1&0\\0&-1\end{array}\right)}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{x}, \;\sigma_{y}, \;\sigma_{z}} are 2 by 2 Pauli matrices.
Let's define:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec \alpha=\alpha _{x} \hat x+\alpha _{y} \hat y+\alpha _{z} \hat z}
Then we can write:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=c \vec \alpha \vec p +\beta mc^2}
Substituting all quantities by their corresponding operators, we obtain Dirac equation:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \hbar \frac {\partial \psi}{\partial t}=H \psi}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=c \vec \alpha \vec p + \beta mc^2}
Dirac equation can also be written explicitly as follows:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \hbar \frac {\partial \psi_{1}}{\partial t}=c(p_{x}-ip_{y}) \psi _{4}+cp_{z} \psi _{3} + mc^2 \psi _{1}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \hbar \frac {\partial \psi_{2}}{\partial t}=c(p_{x}+ip_{y}) \psi _{3}-cp_{z} \psi _{4} + mc^2 \psi _{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \hbar \frac {\partial \psi_{3}}{\partial t}=c(p_{x}-ip_{y}) \psi _{2}+cp_{z} \psi _{1} - mc^2 \psi _{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \hbar \frac {\partial \psi_{4}}{\partial t}=c(p_{x}+ip_{y}) \psi _{1}-cp_{z} \psi _{2} - mc^2 \psi _{4}}
In the present of electromagnetic field, Dirac equation becomes:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (i \hbar \frac {\partial }{\partial t} -e \phi) \psi = \left [ c \vec \alpha (\frac {\hbar}{i} \vec \nabla - \frac {e}{c} \bold A)+\beta mc^2 \right ]\psi}
Continuity equation
Dirac equation and its adjoint equation:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \hbar \frac {\partial \psi}{\partial t}=(-i \hbar c \vec \alpha \vec \nabla + mc^2 \beta) \psi}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -i \hbar \frac {\partial \psi ^{\dagger}}{\partial t}=(i \hbar c \vec \nabla \psi ^{\dagger} \vec \alpha + mc^2 \psi ^{\dagger} \beta )}
Multiplying Dirac equation by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi ^{\dagger}} from the left and the adjoint equation by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \psi} from the right, we get:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \hbar \psi ^{\dagger} \frac {\partial \psi}{\partial t}=-i \hbar c \psi ^{\dagger} \vec \alpha \vec \nabla \psi+ mc^2 \psi ^{\dagger} \beta \psi}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -i \hbar \frac {\partial \psi ^{\dagger}}{\partial t} \psi=i \hbar c \vec \nabla \psi ^{\dagger} \vec \alpha \psi+ mc^2 \psi ^{\dagger} \beta \psi}
Subtracting one from the other, we get:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \hbar \left ( \psi ^{\dagger} \frac {\partial \psi}{\partial t} + \frac {\partial \psi}{\partial t} \psi ^{\dagger} \right )=-i \hbar c \left [ \psi ^{\dagger} \vec \alpha \vec \nabla \psi + \vec \nabla \psi ^{\dagger} \vec \alpha \psi \right ] = -i \hbar c \vec \nabla \left ( \psi ^{\dagger} \vec \alpha \psi \right )}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow \frac {\partial}{\partial t} \left ( \psi ^{\dagger} \psi \right )+ \vec \nabla \left ( c \psi ^{\dagger} \vec \alpha \psi \right ) = 0}
Therefore, we can define:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = \psi ^{\dagger} \psi } as probability density
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec j = c \left ( \psi ^{\dagger} \vec \alpha \psi \right )} as probability current density