Exercise PhysicsWiki: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:




:<math> \psi (x, \ t) = A e^{i \left( kx - \omega t \right)} \ , </math> ([[User:MichaelBrandow|MichaelBrandow]])
:<math> \psi (x, \ t) = A e^{i \left( kx - \omega t \right)} \ , </math> ([[User:MichaelB|MichaelBrandow]])


<math>f=\langle P, Q, R \rangle</math>
<math>f=\langle P, Q, R \rangle</math>

Revision as of 11:57, 31 August 2009

$$a=b$$

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla \cdot\overrightarrow{B} = 0 } (posted by TerriC, Group 2)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{i\theta} = cos(\theta) + isin(\theta) } (Zach McDargh)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \lambda =c}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\frac{p}{1+\varepsilon\cdot\cos\theta}} (posted by KimberlyWynne 19:05, 29 August 2009 (EDT))

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} } (Sandy Simmons)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{i\pi} + 1 = 0} (Steve Honeywell)


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi (x, \ t) = A e^{i \left( kx - \omega t \right)} \ , } (MichaelBrandow)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f=\langle P, Q, R \rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla f = {\partial f \over \partial x} P + {\partial f \over \partial y} Q + {\partial f \over \partial z} R} (Andrew Wray)


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=0.5kx^2} (Ryan Taylor)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2\psi = \frac{1}{v^2}\frac{\partial^2\psi}{\partial t^2} }


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = G{m1m2 \over r^2 } } (August Larson)


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-\hbar^2}{2m}\nabla^2\psi(r) + V(r)\psi(r) = E\psi(r)} (Brandon Bryant)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = mc^2} Cheyvonne Perry

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = ma} (Jamie Kalb)