Phy5645/Particle in Uniform Magnetic Field: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
ScottMiller (talk | contribs) No edit summary |
||
Line 4: | Line 4: | ||
*Evaluate <math>\left [{\Pi _{x},\Pi _{y}} \right ]</math> | *Evaluate <math>\left [{\Pi _{x},\Pi _{y}} \right ]</math> | ||
*Using the | *Using the Hamiltonian and commutation relation obtained in a), obtain the energy eigenvalues. | ||
---- | ---- | ||
*According to the | *According to the Landau gauge, <math>\text{A}_{x}=\frac{-By}{2}\text{ A}_{y}=\frac{Bx}{2}\text{ A}_{z}=0</math> | ||
<math>\left [{\Pi _{x},\Pi _{y}} \right ]=\left [{\left ({P_{x}-\frac{e}{c}A_{x}} \right ),\left ({P_{y}-\frac{e}{c}A_{y}} \right )} \right ]</math> | <math>\left [{\Pi _{x},\Pi _{y}} \right ]=\left [{\left ({P_{x}-\frac{e}{c}A_{x}} \right ),\left ({P_{y}-\frac{e}{c}A_{y}} \right )} \right ]</math> | ||
Line 20: | Line 20: | ||
*The | *The Hamiltonian for the system is; | ||
<math>H=\frac{(\overrightarrow{P}-\frac{e\overrightarrow{A}}{c})^{2}}{2m}</math> | <math>H=\frac{(\overrightarrow{P}-\frac{e\overrightarrow{A}}{c})^{2}}{2m}</math> | ||
Line 29: | Line 29: | ||
If we define first two terms as <math>\text{H}_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}</math>, and the last one as <math>\text{H}_{2}=\frac{P_{z}^{2}}{2m}</math>, | If we define first two terms as <math>\text{H}_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}</math>, and the last one as <math>\text{H}_{2}=\frac{P_{z}^{2}}{2m}</math>, | ||
The | The Hamiltonian will be <math>\text{H=H}_{1}+H_{2}\!</math>. | ||
<math>H_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}</math> | <math>H_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}</math> | ||
Line 39: | Line 39: | ||
<math>=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m\left ({\frac{eB}{cm}} \right )^{2}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}</math> | <math>=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m\left ({\frac{eB}{cm}} \right )^{2}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}</math> | ||
Then the | Then the Hamiltonian will look like <math>\text{H}_{1}=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m \tilde{w^{2}} \tilde{x^{2}}</math> where <math> \tilde{w}= \left ({\frac{eB}{cm}} \right )</math> and <math>\tilde{x}= \left ({\frac{c\Pi _{x}}{eB}} \right )</math>. | ||
As we know, <math> \text{H}\Psi =E\Psi </math> | As we know, <math> \text{H}\Psi =E\Psi \!</math> | ||
<math> \text{H=}\hbar \left ({\frac{eB}{cm}} \right )(n+\frac{1}{2}) + \frac{P_{z}^{2}}{2m} </math> | <math> \text{H=}\hbar \left ({\frac{eB}{cm}} \right )(n+\frac{1}{2}) + \frac{P_{z}^{2}}{2m} </math> |
Revision as of 15:47, 3 December 2009
An electron moves in magnetic field which is in the z direction, , and the Landau gauge is
- Evaluate
- Using the Hamiltonian and commutation relation obtained in a), obtain the energy eigenvalues.
- According to the Landau gauge,
- The Hamiltonian for the system is;
If we define first two terms as , and the last one as , The Hamiltonian will be .
Then the Hamiltonian will look like where and .
As we know,
So now we can write that;