Phy5645/Particle in Uniform Magnetic Field: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:


*Evaluate <math>\left [{\Pi _{x},\Pi _{y}} \right ]</math>
*Evaluate <math>\left [{\Pi _{x},\Pi _{y}} \right ]</math>
*Using the hamiltonian and commutation relation obtained in a), obtain the energy eigenvalues.
*Using the Hamiltonian and commutation relation obtained in a), obtain the energy eigenvalues.


----
----


*According to the Ladau gauge, <math>\text{A}_{x}=\frac{-By}{2}\text{  A}_{y}=\frac{Bx}{2}\text{  A}_{z}=0</math>
*According to the Landau gauge, <math>\text{A}_{x}=\frac{-By}{2}\text{  A}_{y}=\frac{Bx}{2}\text{  A}_{z}=0</math>


<math>\left [{\Pi _{x},\Pi _{y}} \right ]=\left [{\left ({P_{x}-\frac{e}{c}A_{x}} \right ),\left ({P_{y}-\frac{e}{c}A_{y}} \right )} \right ]</math>
<math>\left [{\Pi _{x},\Pi _{y}} \right ]=\left [{\left ({P_{x}-\frac{e}{c}A_{x}} \right ),\left ({P_{y}-\frac{e}{c}A_{y}} \right )} \right ]</math>
Line 20: Line 20:




*The hamiltonian fot the system is;
*The Hamiltonian for the system is;


<math>H=\frac{(\overrightarrow{P}-\frac{e\overrightarrow{A}}{c})^{2}}{2m}</math>
<math>H=\frac{(\overrightarrow{P}-\frac{e\overrightarrow{A}}{c})^{2}}{2m}</math>
Line 29: Line 29:


If we define first two terms as <math>\text{H}_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}</math>, and the last one as <math>\text{H}_{2}=\frac{P_{z}^{2}}{2m}</math>,
If we define first two terms as <math>\text{H}_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}</math>, and the last one as <math>\text{H}_{2}=\frac{P_{z}^{2}}{2m}</math>,
The hamiltonian will be <math>\text{H=H}_{1}+H_{2}</math>.
The Hamiltonian will be <math>\text{H=H}_{1}+H_{2}\!</math>.


<math>H_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}</math>
<math>H_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}</math>
Line 39: Line 39:
<math>=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m\left ({\frac{eB}{cm}} \right )^{2}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}</math>
<math>=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m\left ({\frac{eB}{cm}} \right )^{2}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}</math>


Then the hamiltonian will look like <math>\text{H}_{1}=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m \tilde{w^{2}} \tilde{x^{2}}</math>  where <math> \tilde{w}= \left ({\frac{eB}{cm}} \right )</math>  and <math>\tilde{x}= \left ({\frac{c\Pi _{x}}{eB}} \right )</math>.
Then the Hamiltonian will look like <math>\text{H}_{1}=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m \tilde{w^{2}} \tilde{x^{2}}</math>  where <math> \tilde{w}= \left ({\frac{eB}{cm}} \right )</math>  and <math>\tilde{x}= \left ({\frac{c\Pi _{x}}{eB}} \right )</math>.


As we know, <math> \text{H}\Psi =E\Psi </math>
As we know, <math> \text{H}\Psi =E\Psi \!</math>


<math> \text{H=}\hbar \left ({\frac{eB}{cm}} \right )(n+\frac{1}{2}) + \frac{P_{z}^{2}}{2m} </math>
<math> \text{H=}\hbar \left ({\frac{eB}{cm}} \right )(n+\frac{1}{2}) + \frac{P_{z}^{2}}{2m} </math>

Revision as of 15:47, 3 December 2009


An electron moves in magnetic field which is in the z direction, , and the Landau gauge is

  • Evaluate
  • Using the Hamiltonian and commutation relation obtained in a), obtain the energy eigenvalues.

  • According to the Landau gauge,


  • The Hamiltonian for the system is;

If we define first two terms as , and the last one as , The Hamiltonian will be .

Then the Hamiltonian will look like where and .

As we know,

So now we can write that;