Phy5645/angularmomcommutation/: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: '''Question:''' In the angular momentum basis, compute <math>\left \langle {l,m\left |{L_{x}^{2}} \right |l,m} \right \rangle </math> and <math>\left \langle {l,m\left |{L_{x}L_{y}} \righ...)
 
No edit summary
Line 34: Line 34:
Again, <math>L_{+}^{2}</math> and <math>L_{-}^{2}</math> won't contribute
Again, <math>L_{+}^{2}</math> and <math>L_{-}^{2}</math> won't contribute


<math>=\frac{1}{4i}\left \langle {lm\left |{L_{-}L_{+}-L_{+}L_{-}} \right |lm} \right \rangle =\frac{1}{4i}\left \lbrace {\left \langle {lm\left |{L_{-}L_{+}} \right |lm} \right \rangle -\left \langle {lm\left |{L_{+}L_{-}} \right |lm} \right \rangle } \right \rbrace </math>
<math>=\frac{1}{4i}\left \langle {l,m\left |{L_{-}L_{+}-L_{+}L_{-}} \right |l,m} \right \rangle =\frac{1}{4i}\left \lbrace {\left \langle {l,m\left |{L_{-}L_{+}} \right |l,m} \right \rangle -\left \langle {l,m\left |{L_{+}L_{-}} \right |l,m} \right \rangle } \right \rbrace </math>


<math>=\frac{\hbar }{4i}\left \lbrace {\sqrt {l(l+1)-m(m+1)} \left \langle {lm\left |{L_{-}} \right |lm+1} \right \rangle -\sqrt {l(l+1)-m(m-1)} \left \langle {lm\left |{L_{+}} \right |lm-1} \right \rangle } \right \rbrace </math>
<math>=\frac{\hbar }{4i}\left \lbrace {\sqrt {l(l+1)-m(m+1)} \left \langle {l,m\left |{L_{-}} \right |l,m+1} \right \rangle -\sqrt {l(l+1)-m(m-1)} \left \langle {l,m\left |{L_{+}} \right |l,m-1} \right \rangle } \right \rbrace </math>


<math>=\frac{\hbar ^{2}}{4i}\left \lbrace {\sqrt {l(l+1)-m(m+1)} \sqrt {l(l+1)-(m+1)m} \left \langle {lm} \right | \left. {} {lm} \right \rangle -\sqrt {l(l+1)-m(m-1)} \sqrt {l(l+1)-(m-1)m} \left \langle {lm} \right | \left. {} {lm} \right \rangle } \right \rbrace </math>
<math>=\frac{\hbar ^{2}}{4i}\left \lbrace {\sqrt {l(l+1)-m(m+1)} \sqrt {l(l+1)-(m+1)m} \left \langle {l,m} \right | \left. {} {l,m} \right \rangle -\sqrt {l(l+1)-m(m-1)} \sqrt {l(l+1)-(m-1)m} \left \langle {l,m} \right | \left. {} {l,m} \right \rangle } \right \rbrace </math>


<math>=\frac{\hbar ^{2}}{4i}\left ({l(l+1)-m^{2}-m-l(l+1)+m^{2}-m} \right )</math>
<math>=\frac{\hbar ^{2}}{4i}\left ({l(l+1)-m^{2}-m-l(l+1)+m^{2}-m} \right )</math>

Revision as of 00:35, 26 October 2009

Question: In the angular momentum basis, compute and .


Solution:

Since , we can obtain ;

By definition, and won't contribute because and


Again, and won't contribute