|
|
Line 1: |
Line 1: |
| Submitted by Team 1
| |
|
| |
| --------
| |
|
| |
| '''Questions:'''
| |
|
| |
| (a) Show that the operator
| |
|
| |
| :<math> \hat{R}_{\Delta \phi} \equiv \exp \left( \frac{i \Delta \phi \hat{L}_z}{\hbar} \right)</math>
| |
|
| |
| when acting on the function <math> f(\phi) \!</math> changes <math> f \!</math> by a rotation of coordinates about the <math> z \!</math> axis so that the radius through <math> \phi \!</math> is rotated to the radius through <math> \phi + \Delta \phi \!</math>. That is, show that
| |
|
| |
| :<math> \hat{R}_{\Delta\phi} f(\phi) = f \left( \phi + \Delta \phi \right) </math>.
| |
|
| |
| (b) Show that the operator
| |
|
| |
| :<math> \hat{R}_{\Delta\vec{\phi}} = \exp \left( \frac{i \Delta \vec{\phi} \cdot \mathbf{\hat{L}}}{\hbar} \right) </math>
| |
|
| |
| when action on <math> f(\mathbf{r}) \!</math> changes <math> f \!</math> by rotating <math> \mathbf{r} \!</math> to a new value on the surface of the sphere of radius <math> r \!</math>, but rotated away from <math> \mathbf{r} \!</math> through the azimuth <math> \Delta \phi \!</math>, so that <math> \mathbf{r} \left( \theta, \phi \right) \rightarrow \mathbf{r}' = \mathbf{r} \left( \theta, \phi + \Delta \phi \right) \!</math>. For infinitesimal displacement <math> \delta \vec{\phi} \!</math>, we may write
| |
|
| |
| :<math> \hat{R}_{\delta \vec{\phi}} f(\mathbf{r}) = f\left( \mathbf{r} + \delta \mathbf{r} \right) </math>
| |
|
| |
| :<math> \delta \mathbf{r} = \delta \vec{\phi} \times \mathbf{r}. </math>
| |
|
| |
| ---------
| |
|
| |
| '''Solutions:'''
| |
|
| |
| (a) | | (a) |
| :<math> \hat{R}_{\Delta \phi} f = \left[ \exp \left( \Delta \phi \frac{\partial}{\partial \phi} \right) \right] f </math> | | :<math> \hat{R}_{\Delta \phi} f = \left[ \exp \left( \Delta \phi \frac{\partial}{\partial \phi} \right) \right] f </math> |
Revision as of 21:55, 28 August 2013
(a)
![{\displaystyle {\hat {R}}_{\Delta \phi }f=\left[\exp \left(\Delta \phi {\frac {\partial }{\partial \phi }}\right)\right]f}](https://wikimedia.org/api/rest_v1/media/math/render/svg/edac78cf5c44b4748da35831b77af2d34f35e198)

(b) Let
be an infinitesimal angle so that
in the limit that
. For the infinitesimal rotation

so that



.
In the Taylor series expansion of
above we have only kept terms of
. [The expression
is valid only to terms of
.] In this manner we obtain

For a finite rotational displacement through the angle
, we apply the operator
,
times:

and pss to the limit
or, equivalently,
.
.
The operator
rotates
to
with respect to a fixed coordinate frame. If, on the other hand, the coordinate frame is rotated through
with
fixed in space, then in the new coordinate frame this vector has the value
. Thus, rotation of coordinates through
is generated by the operator
(Note: This problem is excerpted from Introductory Quantum Mechanics, 2nd edition, p377-p379, which is written by Richard L. Liboff.)