Delta Potential Born Approximation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:


<math>f_B(\theta)=-\frac{m}{2\pi\hbar^2}\int V(r')e^{-i\mathbf{q}\cdot\mathbf{r}'}d^3r'</math>
<math>f_B(\theta)=-\frac{m}{2\pi\hbar^2}\int V(r')e^{-i\mathbf{q}\cdot\mathbf{r}'}d^3r'</math>
where <math>\mathbf{q}\</math>




i\hbar\frac{\partial \psi(\textbf{r},t)}{\partial t} = \left[ -\frac{\hbar^2}{2m}\nabla^2 + V(\textbf{r})\right]\psi(\textbf{r},t
i\hbar\frac{\partial \psi(\textbf{r},t)}{\partial t} = \left[ -\frac{\hbar^2}{2m}\nabla^2 + V(\textbf{r})\right]\psi(\textbf{r},t

Revision as of 21:25, 30 November 2009

Problem

Calculate the Born approximation to the differential and total cross sections for a particle of mass m off the -function potential .

Solution:

In Born approximation,

where Failed to parse (syntax error): {\displaystyle \mathbf{q}\}


i\hbar\frac{\partial \psi(\textbf{r},t)}{\partial t} = \left[ -\frac{\hbar^2}{2m}\nabla^2 + V(\textbf{r})\right]\psi(\textbf{r},t