Phy5645/Problem 1D sample: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
Using the Schroedinger's equation show that we can treat the problem like three independent one-dimensional problems. Relate the energy of the three-dimensional state to the effective energies of one-dimensional problem. | Using the Schroedinger's equation show that we can treat the problem like three independent one-dimensional problems. Relate the energy of the three-dimensional state to the effective energies of one-dimensional problem. | ||
--------------- | |||
The Schroedinger's equation takes the form: | The Schroedinger's equation takes the form: | ||
Line 22: | Line 22: | ||
\begin{align} | \begin{align} | ||
-\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z) + \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\ | -\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z) + \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\ | ||
+ \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) = E\Phi(x) \Delta(y) \Omega (z) | + \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) &= E\Phi(x) \Delta(y) \Omega (z) | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Line 30: | Line 30: | ||
:<math> | :<math> | ||
-\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x) | -\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x) | ||
-\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y) | -\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y) | ||
-\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z) | -\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z) | ||
= E | = E | ||
</math> | </math> | ||
Revision as of 00:46, 5 December 2009
(Submitted by team 1. Based on problem 3.19 in Schaum's Theory and problems of Quantum Mechanics)
Consider a particle of mass m in a three dimensional potential: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x,y,z) = X(x)+Y(y)+Z(z)\!}
Using the Schroedinger's equation show that we can treat the problem like three independent one-dimensional problems. Relate the energy of the three-dimensional state to the effective energies of one-dimensional problem.
The Schroedinger's equation takes the form:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\frac{d^2\psi(x,y,z)}{dx^2}+\left(X(x)+Y(y)+Z(z)\right)\psi(x,y,z)=E\psi(x,y,z)}
Assuming that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi\!}
can be write like:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x,y,z)=\Phi(x) \Delta(y) \Omega (z) \!}
So,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} -\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z) + \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\ + \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) &= E\Phi(x) \Delta(y) \Omega (z) \end{align} }
Dividing by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x,y,z) \!}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x) -\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y) -\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z) = E }
Perfectly we can separate the right hand side in three parts, where only one depends of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \!} , only one of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y \!} and only one of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z \!} . Then each of these parts must be equal to a constant. So:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x) = E_x }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y) = E_y }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z) = E_z }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_x \!} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_y \!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_z \!} are constant and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = E_x+E_y+E_z \!}
Hence the three-dimensional problem has been divided in three one-dimensional problems where the total energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E \!}
is the sum of the energies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_x \!}
, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_y \!}
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_z \!}
in each dimension.