Exponential Potential Born Approximation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
(Submitted by team 1) | (Submitted by team 1) | ||
---- | |||
Using the Born approximation, find the differential cross section for the next exponential potential: | Using the Born approximation, find the differential cross section for the next exponential potential: | ||
Line 8: | Line 10: | ||
---------- | ---------- | ||
If the potential V is spherical symmetric we can use the equation: | If the potential <math> V \!</math> is spherical symmetric we can use the equation: | ||
: <math> f_{born}(\theta) = \frac{ | :<math> f_{born}(\theta) = - \frac{2m}{\hbar^2} \int_0^\infin dr' V(r') \frac{\sin(qr')}{qr'} {r'}^2 </math> | ||
So, | So, | ||
: <math> f_{born}(\theta) = \frac{ | : <math> f_{born}(\theta) = - \frac{2mV_0}{\hbar^2 q} \int_0^\infin r' \sin(qr') e^{-\frac{r'}{a}} dr' </math> | ||
Line 25: | Line 27: | ||
\begin{align} | \begin{align} | ||
f_{born}(\theta) | f_{born}(\theta) | ||
&= \frac{ | &= - \frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} \int_0^\infin \cos(qr') e^{-\frac{r'}{a}} dr' \\ | ||
&= \frac{ | &= - \frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re\left[ \int_0^\infin e^{iqr'} e^{-\frac{r'}{a}} dr' \right] \\ | ||
&= \frac{ | &= - \frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re\left[ \frac { e^{(iq - \frac{1}{a})r'} }{iq - \frac{1}{a}} \right]_{_0}^{^\infin} \\ | ||
&= \frac{ | &= -\frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re\left[ \frac { 1 }{\frac{1}{a} + iq }\right] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Line 41: | Line 42: | ||
:<math> \frac{d\sigma}{d \theta} = |f_{born}(\theta) |^2 = \frac{16m^2V_0^2}{\hbar^4 a^2} (\frac{1}{ \frac{1}{a^2} +q^2 })^4 </math> | :<math> \frac{d\sigma}{d \theta} = \left|f_{born}(\theta) \right|^2 = \frac{16m^2V_0^2}{\hbar^4 a^2} \left(\frac{1}{ \frac{1}{a^2} +q^2 }\right)^4 | ||
</math> | |||
Revision as of 20:37, 5 December 2009
(Submitted by team 1)
Using the Born approximation, find the differential cross section for the next exponential potential:
If the potential is spherical symmetric we can use the equation:
So,
Solving this integral by parts,
So, the differential cross section,