Exponential Potential Born Approximation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
(Submitted by team 1)
(Submitted by team 1)
----


Using the Born approximation, find the differential cross section for the next exponential potential:
Using the Born approximation, find the differential cross section for the next exponential potential:
Line 8: Line 10:
----------
----------


If the potential V is spherical symmetric we can use the equation:
If the potential <math> V \!</math> is spherical symmetric we can use the equation:




: <math> f_{born}(\theta) = \frac{-2m}{\hbar^2} \int_0^\infin dr' V(r') \frac{\sin(qr')}{qr'} {r'}^2 </math>
:<math> f_{born}(\theta) = - \frac{2m}{\hbar^2} \int_0^\infin dr' V(r') \frac{\sin(qr')}{qr'} {r'}^2 </math>




So,
So,


: <math> f_{born}(\theta) = \frac{-2mV_0}{\hbar^2 q} \int_0^\infin r' sin(qr') e^{-\frac{r'}{a}} dr' </math>
: <math> f_{born}(\theta) = - \frac{2mV_0}{\hbar^2 q} \int_0^\infin r' \sin(qr') e^{-\frac{r'}{a}} dr' </math>




Line 25: Line 27:
\begin{align}
\begin{align}
f_{born}(\theta)  
f_{born}(\theta)  
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q}  \int_0^\infin cos(qr') e^{-\frac{r'}{a}} dr'    \\
&= - \frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q}  \int_0^\infin \cos(qr') e^{-\frac{r'}{a}} dr'    \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \int_0^\infin  e^{iqr'} e^{-\frac{r'}{a}} dr' ] \\
&= - \frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re\left[ \int_0^\infin  e^{iqr'} e^{-\frac{r'}{a}} dr' \right] \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { e^{(iq - \frac{1}{a})r'} }{iq - \frac{1}{a}} ]_{_0}^{^\infin} \\
&= - \frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re\left[ \frac { e^{(iq - \frac{1}{a})r'} }{iq - \frac{1}{a}} \right]_{_0}^{^\infin} \\
&= \frac{-2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re[ \frac { 1 }{\frac{1}{a} + iq }] \\
&= -\frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re\left[ \frac { 1 }{\frac{1}{a} + iq }\right]
 
\end{align}
\end{align}
</math>
</math>
Line 41: Line 42:




:<math> \frac{d\sigma}{d \theta}    = |f_{born}(\theta) |^2  =  \frac{16m^2V_0^2}{\hbar^4 a^2} (\frac{1}{ \frac{1}{a^2} +q^2 })^4  </math>
:<math> \frac{d\sigma}{d \theta}    = \left|f_{born}(\theta) \right|^2  =  \frac{16m^2V_0^2}{\hbar^4 a^2} \left(\frac{1}{ \frac{1}{a^2} +q^2 }\right)^4   
 
</math>
:

Revision as of 20:37, 5 December 2009

(Submitted by team 1)


Using the Born approximation, find the differential cross section for the next exponential potential:



If the potential is spherical symmetric we can use the equation:



So,


Solving this integral by parts,




So, the differential cross section,