Commutation Problem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Let <math> f(x) \!</math> be a differentiable function, using <math>[x,p_{x}]=i\hbar</math>, prove:
Let <math> f(x) \!</math> be a differentiable function, using
<math>[\hat{x},\hat{p}_{x}]=i\hbar</math>, prove:


(a) <math>[x,p^{2}_{x}f(x)  ]=2i\hbar p_{x} f(x)</math>
(a) <math>[\hat{x},\hat{p}^{2}_{x}f(\hat{x})  ]=2i\hbar \hat{p}_{x}
f(\hat{x})</math>


(b) <math>[x,p_{x}f(x)p_{x}]=i\hbar[f(x)p_{x}+p_{x}f(x)]</math>
(b)
<math>[\hat{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}]=i\hbar[f(\hat{x})\hat{p}_{x}+\hat{p}_{x}f(\hat{x})]</math>


(c) <math>[p_{x},p^{2}_{x}f(x)]=-i\hbar p^{2}_{x}\frac{df}{dx}</math>
(c) <math>[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})]=-i\hbar
\hat{p}^{2}_{x}\frac{df(\hat{x})}{dx}</math>


(d) <math>[p_{x},p_{x}f(x)p_{x}]=-i\hbar p_{x}\frac{df}{dx}p_{x}</math>
(d) <math>[\hat{p}_{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}]=-i\hbar
\hat{p}_{x}\frac{df(\hat{x})}{dx}\hat{p}_{x}</math>




Line 17: Line 22:
\begin{align}
\begin{align}


&[x,p^{2}_{x}f(x)] \\
&[\hat{x},\hat{p}^{2}_{x}f(\hat{x})] \\
&=[x,p_{x}]p_{x}f(x)+p_{x}[x,p_{x}f(x)] \\
&=[\hat{x},\hat{p}_{x}]\hat{p}_{x}f(\hat{x})+\hat{p}_{x}[\hat{x},\hat{p}_{x}f(\hat{x})] \\
&=i\hbar p_{x}f(x) + p^{2}_{x}[x,f(x)] + p_{x}[x,p_{x}]f(x) \\
&=i\hbar \hat{p}_{x}f(\hat{x}) + \hat{p}^{2}_{x}[\hat{x},f(\hat{x})] + \hat{p}_{x}[\hat{x},\hat{p}_{x}]f(\hat{x}) \\
&=i\hbar p_{x}f(x)+ i\hbar p_{x}f(x) \\
&=i\hbar \hat{p}_{x}f(\hat{x})+ i\hbar \hat{p}_{x}f(\hat{x}) \\
&=2i\hbar p_{x}f(x)
&=2i\hbar \hat{p}_{x}f(\hat{x})
\end{align}
\end{align}


Line 33: Line 38:
\begin{align}
\begin{align}


&[x,p_{x}f(x)p_{x}] \\
&[\hat{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}] \\
&=[x,p_{x}]f(x)p_{x}+p_{x}[x,f(x)p_{x}] \\
&=[\hat{x},\hat{p}_{x}]f(\hat{x})\hat{p}_{x}+\hat{p}_{x}[\hat{x},f(\hat{x})\hat{p}_{x}] \\
&=i\hbar f(x)p_{x} + p_{x}[x,p_{x}]f(x) + p_{x}[x,f(x)]p_{x} \\
&=i\hbar f(\hat{x})\hat{p}_{x} + \hat{p}_{x}[\hat{x},\hat{p}_{x}]f(\hat{x}) + \hat{p}_{x}[\hat{x},f(\hat{x})]\hat{p}_{x} \\
&=i\hbar [f(x)p_{x}+p_{x}f(x)]
&=i\hbar [f(\hat{x})\hat{p}_{x}+\hat{p}_{x}f(\hat{x})]
\end{align}
\end{align}


Line 48: Line 53:
\begin{align}
\begin{align}


&[p_{x},p^{2}_{x}f(x)] \\
&[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})] \\
&=[p_{x},p^{2}_{x}]f(x)+p^{2}_{x}[p_{x},f(x)] \\
&=[\hat{p}_{x},\hat{p}^{2}_{x}]f(\hat{x})+\hat{p}^{2}_{x}[\hat{p}_{x},f(\hat{x})] \\
&= p^{2}_{x} [p_{x},f(x)]
&= \hat{p}^{2}_{x} [\hat{p}_{x},f(\hat{x})]
\end{align}
\end{align}
</math>
</math>
Line 59: Line 64:
\begin{align}
\begin{align}


&[p_{x},f(x)]\psi(x) \\
&[\hat{p}_{x},f(\hat{x})]\psi(x) \\
&=-i\hbar \frac{d}{dx}(f(x)\psi(x))+i\hbar f(x)\frac{d\psi(x)}{dx} \\
&=-i\hbar \frac{d}{dx}(f(x)\psi(x))+i\hbar f(x)\frac{d\psi(x)}{dx} \\
&=-i\hbar \frac{df}{dx}\psi(x)-i\hbar f(x)\frac{d\psi(x)}{dx} +i\hbar f(x)\frac{d\psi(x)}{dx}  \\
&=-i\hbar \frac{df}{dx}\psi(x)-i\hbar f(x)\frac{d\psi(x)}{dx} +i\hbar f(x)\frac{d\psi(x)}{dx}  \\
Line 66: Line 71:
</math>
</math>


So  
So


<math>[p_{x},f(x)]
<math>[\hat{p}_{x},f(\hat{x})] =-i\hbar \frac{df(\hat{x})}{dx}
=-i\hbar \frac{df}{dx}
</math>
</math>


and so
and so


<math>[p_{x},p^{2}_{x}f(x)]
<math>[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})] =-i\hbar
=-i\hbar p^{2}_{x}\frac{df}{dx}
\hat{p}^{2}_{x}\frac{df(\hat{x})}{dx} </math>
</math>




Line 86: Line 89:
\begin{align}
\begin{align}


&[p_{x},p_{x}f(x)p_{x}] \\
&[\hat{p}_{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}] \\
&=p_{x}f[p_{x},p_{x}]+[p_{x},p_{x}f]p_{x} \\
&=\hat{p}_{x}f(\hat{x})[\hat{p}_{x},\hat{p}_{x}]+[\hat{p}_{x},\hat{p}_{x}f(\hat{x})]\hat{p}_{x} \\
&=p_{x}[p_{x},f]p_{x}+[p_{x},p_{x}]fp_{x} \\
&=\hat{p}_{x}[\hat{p}_{x},f(\hat{x})]\hat{p}_{x}+[\hat{p}_{x},\hat{p}_{x}]f(\hat{x})\hat{p}_{x} \\
&=-i\hbar p_{x}\frac{df}{dx}p_{x}
&=-i\hbar \hat{p}_{x}\frac{df(\hat{x})}{dx}\hat{p}_{x}
\end{align}
\end{align}


</math>
</math>

Revision as of 21:38, 5 December 2009

Let be a differentiable function, using , prove:

(a)

(b)

(c)

(d)


sol:

(a)


(b)


(c)

Now, consider

So

and so



(d)