Commutation Problem: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Let <math> f(x) \!</math> be a differentiable function, using <math>[x, | Let <math> f(x) \!</math> be a differentiable function, using | ||
<math>[\hat{x},\hat{p}_{x}]=i\hbar</math>, prove: | |||
(a) <math>[x,p^{2}_{x}f(x) ]=2i\hbar | (a) <math>[\hat{x},\hat{p}^{2}_{x}f(\hat{x}) ]=2i\hbar \hat{p}_{x} | ||
f(\hat{x})</math> | |||
(b) <math>[x, | (b) | ||
<math>[\hat{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}]=i\hbar[f(\hat{x})\hat{p}_{x}+\hat{p}_{x}f(\hat{x})]</math> | |||
(c) <math>[ | (c) <math>[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})]=-i\hbar | ||
\hat{p}^{2}_{x}\frac{df(\hat{x})}{dx}</math> | |||
(d) <math>[ | (d) <math>[\hat{p}_{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}]=-i\hbar | ||
\hat{p}_{x}\frac{df(\hat{x})}{dx}\hat{p}_{x}</math> | |||
Line 17: | Line 22: | ||
\begin{align} | \begin{align} | ||
&[x,p^{2}_{x}f(x)] \\ | &[\hat{x},\hat{p}^{2}_{x}f(\hat{x})] \\ | ||
&=[x, | &=[\hat{x},\hat{p}_{x}]\hat{p}_{x}f(\hat{x})+\hat{p}_{x}[\hat{x},\hat{p}_{x}f(\hat{x})] \\ | ||
&=i\hbar | &=i\hbar \hat{p}_{x}f(\hat{x}) + \hat{p}^{2}_{x}[\hat{x},f(\hat{x})] + \hat{p}_{x}[\hat{x},\hat{p}_{x}]f(\hat{x}) \\ | ||
&=i\hbar | &=i\hbar \hat{p}_{x}f(\hat{x})+ i\hbar \hat{p}_{x}f(\hat{x}) \\ | ||
&=2i\hbar | &=2i\hbar \hat{p}_{x}f(\hat{x}) | ||
\end{align} | \end{align} | ||
Line 33: | Line 38: | ||
\begin{align} | \begin{align} | ||
&[x, | &[\hat{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}] \\ | ||
&=[x, | &=[\hat{x},\hat{p}_{x}]f(\hat{x})\hat{p}_{x}+\hat{p}_{x}[\hat{x},f(\hat{x})\hat{p}_{x}] \\ | ||
&=i\hbar f(x) | &=i\hbar f(\hat{x})\hat{p}_{x} + \hat{p}_{x}[\hat{x},\hat{p}_{x}]f(\hat{x}) + \hat{p}_{x}[\hat{x},f(\hat{x})]\hat{p}_{x} \\ | ||
&=i\hbar [f(x) | &=i\hbar [f(\hat{x})\hat{p}_{x}+\hat{p}_{x}f(\hat{x})] | ||
\end{align} | \end{align} | ||
Line 48: | Line 53: | ||
\begin{align} | \begin{align} | ||
&[ | &[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})] \\ | ||
&=[ | &=[\hat{p}_{x},\hat{p}^{2}_{x}]f(\hat{x})+\hat{p}^{2}_{x}[\hat{p}_{x},f(\hat{x})] \\ | ||
&= p^{2}_{x} [ | &= \hat{p}^{2}_{x} [\hat{p}_{x},f(\hat{x})] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Line 59: | Line 64: | ||
\begin{align} | \begin{align} | ||
&[ | &[\hat{p}_{x},f(\hat{x})]\psi(x) \\ | ||
&=-i\hbar \frac{d}{dx}(f(x)\psi(x))+i\hbar f(x)\frac{d\psi(x)}{dx} \\ | &=-i\hbar \frac{d}{dx}(f(x)\psi(x))+i\hbar f(x)\frac{d\psi(x)}{dx} \\ | ||
&=-i\hbar \frac{df}{dx}\psi(x)-i\hbar f(x)\frac{d\psi(x)}{dx} +i\hbar f(x)\frac{d\psi(x)}{dx} \\ | &=-i\hbar \frac{df}{dx}\psi(x)-i\hbar f(x)\frac{d\psi(x)}{dx} +i\hbar f(x)\frac{d\psi(x)}{dx} \\ | ||
Line 66: | Line 71: | ||
</math> | </math> | ||
So | So | ||
<math>[ | <math>[\hat{p}_{x},f(\hat{x})] =-i\hbar \frac{df(\hat{x})}{dx} | ||
=-i\hbar \frac{df}{dx} | |||
</math> | </math> | ||
and so | and so | ||
<math>[ | <math>[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})] =-i\hbar | ||
=-i\hbar p^{2}_{x}\frac{df}{dx} | \hat{p}^{2}_{x}\frac{df(\hat{x})}{dx} </math> | ||
</math> | |||
Line 86: | Line 89: | ||
\begin{align} | \begin{align} | ||
&[ | &[\hat{p}_{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}] \\ | ||
&= | &=\hat{p}_{x}f(\hat{x})[\hat{p}_{x},\hat{p}_{x}]+[\hat{p}_{x},\hat{p}_{x}f(\hat{x})]\hat{p}_{x} \\ | ||
&= | &=\hat{p}_{x}[\hat{p}_{x},f(\hat{x})]\hat{p}_{x}+[\hat{p}_{x},\hat{p}_{x}]f(\hat{x})\hat{p}_{x} \\ | ||
&=-i\hbar | &=-i\hbar \hat{p}_{x}\frac{df(\hat{x})}{dx}\hat{p}_{x} | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 21:38, 5 December 2009
Let be a differentiable function, using , prove:
(a)
(b)
(c)
(d)
sol:
(a)
(b)
(c)
Now, consider
So
and so
(d)