Phy5645/Cross Section Relation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: Consider the scattering of a particle from a real spherically symmetric potential. If <math>\frac{\mathrm{d} \sigma (\theta) }{\mathrm{d} \Omega }</math> is the differential cross section ...)
 
No edit summary
Line 7: Line 7:


The differential cross section is related to the scattering amplitude through
The differential cross section is related to the scattering amplitude through
<math>\frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} = |f_{k}(\theta)|^2</math>
<math>\frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} = |f_{k}(\theta)|^2</math>
Since <math>| f |^2 = (Re f )^2 + (Im f )^2 \geq  (Im f )^2</math>  
Since <math>| f |^2 = (Re f )^2 + (Im f )^2 \geq  (Im f )^2</math>  
therefore, \frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} \geq (Im f_{k}(\theta))^{2}
therefore, \frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} \geq (Im f_{k}(\theta))^{2}
On the other hand, from the optical theorem we have
On the other hand, from the optical theorem we have
<math> \sigma =\frac{4\pi}{k} Im f_{k}(\theta)) \leq \frac{4\pi}{k}\sqrt{\frac{\mathrm{d} \sigma (0) }{\mathrm{d} \Omega }}</math>
<math> \sigma =\frac{4\pi}{k} Im f_{k}(\theta)) \leq \frac{4\pi}{k}\sqrt{\frac{\mathrm{d} \sigma (0) }{\mathrm{d} \Omega }}</math>


For a central potential the scattering amplitude is
For a central potential the scattering amplitude is
<math>f_k(\theta) = \frac{1}{k}\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} sin\delta _{l} P_{l} (cos \theta)</math>
<math>f_k(\theta) = \frac{1}{k}\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} sin\delta _{l} P_{l} (cos \theta)</math>


and, in terms of this, the differential cross section is
and, in terms of this, the differential cross section is
<math>\frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} = \frac{1}{k^2}\sum_{l = 0}^{\infty}\sum_{l^{\prime} = 0}^{\infty}(2l + 1)(2l^{\prime} + 1) e^{i(\delta _{l}- \delta _{l^{\prime}})} sin\delta _{l}sin\delta _{l^{\prime}} P_{l} (cos \theta)P_{l^{\prime}} (cos \theta)</math>
<math>\frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} = \frac{1}{k^2}\sum_{l = 0}^{\infty}\sum_{l^{\prime} = 0}^{\infty}(2l + 1)(2l^{\prime} + 1) e^{i(\delta _{l}- \delta _{l^{\prime}})} sin\delta _{l}sin\delta _{l^{\prime}} P_{l} (cos \theta)P_{l^{\prime}} (cos \theta)</math>
The total cross section is
The total cross section is
<math>\sigma = \frac{4\pi ^2}{k^2}\sum_{l = 0}^{\infty}(2l + 1) sin^2\delta _{l}</math>
<math>\sigma = \frac{4\pi ^2}{k^2}\sum_{l = 0}^{\infty}(2l + 1) sin^2\delta _{l}</math>


Since <math> P_{l^} (1)= 1</math>  we can write
Since <math> P_{l}(1)= 1</math>  we can write


<math>\frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} sin\delta _{l}  \right ]^2</math>
<math>\frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} sin\delta _{l}  \right ]^2</math>

Revision as of 18:42, 7 December 2009

Consider the scattering of a particle from a real spherically symmetric potential. If is the differential cross section and is the total cross section, show that

for a general central potential using the partial-wave expansion of the scattering amplitude and the cross section.

Solution:

The differential cross section is related to the scattering amplitude through

Since

therefore, \frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} \geq (Im f_{k}(\theta))^{2}

On the other hand, from the optical theorem we have

For a central potential the scattering amplitude is

and, in terms of this, the differential cross section is

The total cross section is

Since we can write