Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
== Example 1 == | == Example 1 == | ||
Consider a particle moving in a potential field <math>V(\textbf{r})</math>, (1) Prove the average energy equation: <math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math>, | Consider a particle moving in a potential field <math>V(\textbf{r})</math>, (1) Prove the average energy equation: <math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math>, | ||
where W is energy density, (2) Prove the energy conservation equation: <math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>, where <math>\textbf{S}</math> is energy flux density: <math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right) | where W is energy density, (2) Prove the energy conservation equation: <math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>, where <math>\textbf{S}</math> is energy flux density: <math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)</math> | ||
Prove: | |||
the energy operator in three dimensions is: <math><H>=-\frac{\hbar^2}{2m}\nabla^2\psi+V\psi</math> | |||
so the average energy in state <math>psi</math> is: | |||
<math><E>=iiint \psi^*Hpsi d^3x=iiint psi^*\left(-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi\right) d^3x </math> |
Revision as of 16:17, 9 December 2009
Example 1
Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:
Prove: the energy operator in three dimensions is: so the average energy in state is: