Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
Line 9: | Line 9: | ||
Using: <math>\psi^*\nabla^2\psi=\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi </math>, | Using: <math>\psi^*\nabla^2\psi=\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi </math>, | ||
hence: | hence: | ||
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left{\nabla\left(\psi^*\psi\right)-\nabla\psi^*\nabla\psi\right} d^3x+\iiint\psi^*\nabla\psi d^3x </math>, | <math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right) | ||
\left{\nabla\left(\psi^*\psi\right)-\nabla\psi^*\nabla\psi\right} d^3x+\iiint\psi^*\nabla\psi d^3x </math>, |
Revision as of 16:32, 9 December 2009
Example 1
Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:
Prove: the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: Failed to parse (syntax error): {\displaystyle <E>=\iiint\left(-\frac{\hbar^2}{2m}\right) \left{\nabla\left(\psi^*\psi\right)-\nabla\psi^*\nabla\psi\right} d^3x+\iiint\psi^*\nabla\psi d^3x } ,