Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 11: Line 11:
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right)d^3x +\iiint\psi^*\nabla\psi d^3x </math>
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right)d^3x +\iiint\psi^*\nabla\psi d^3x </math>


<math>=-\frac{\hbar^2}{2m}\iiint\left(\nabla\left(psi^*\nabla\psi\right)d^3x + \frac{\hbar^2}{2m}\iiint\nabla\psi^*\nabla\psi d^3x + \iiint\psi^*\nabla\psi d^3x</math>,
<math>=-\frac{\hbar^2}{2m}\iiint\nabla\left(psi^*\nabla\psi\right)d^3x + \frac{\hbar^2}{2m}\iiint\nabla\psi^*\nabla\psi d^3x + \iiint\psi^*\nabla\psi d^3x</math>,

Revision as of 16:56, 9 December 2009

Example 1

Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:

Prove: the energy operator in three dimensions is: so the average energy in state is: , Using: , hence:

,