Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
Line 11: Line 11:
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right)d^3x +\iiint\psi^*\nabla\psi d^3x  
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right)d^3x +\iiint\psi^*\nabla\psi d^3x  
=-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right)d^3x + \frac{\hbar^2}{2m}\iiint\nabla\psi^*\nabla\psi d^3x + \iiint\psi^*\nabla\psi d^3x</math>,
=-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right)d^3x + \frac{\hbar^2}{2m}\iiint\nabla\psi^*\nabla\psi d^3x + \iiint\psi^*\nabla\psi d^3x</math>,
Using Gauss Theorem for the last term:
<math>-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right) d^3x=\iint\psi^*\nabla\psi\cdot d\textbf{S}</math>,

Revision as of 17:02, 9 December 2009

Example 1

Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:

Prove: the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,

Using Gauss Theorem for the last term: ,