Phy5645/Hydrogen Atom WKB: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:


----
----
----
The approximation is:


<math>\int {P(r)} dr=(n+\frac{1}{2})\pi \hbar</math>
<math>\int {P(r)} dr=(n+\frac{1}{2})\pi \hbar</math>

Revision as of 20:25, 9 December 2009

Use WKB approximation to estimate energy spectrum for Hydrogen atom.



The approximation is:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{ use definition let }\int\limits_{r1}^{r2} {\left ({\frac{(x-a)(x-b)}{x^{2}}} \right )^{1/2}dx}=\frac{\pi }{2}(\sqrt {b} -\sqrt {a} )^{2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt {2mE} *\frac{\pi }{2}*(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\frac{1}{2})\pi \hbar }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt {2mE} *\frac{\pi }{2}*(r_{2}+r_{1}-2\sqrt {r_{1}r_{2}} )=(n+\frac{1}{2})\pi \hbar }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{let r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)=r^{2}-(r_{1}+r_{2})+r_{1}r_{2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{so V=}(r_{1}+r_{2})\text{ and T=}r_{1}r_{2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt {2mE} *\frac{\pi }{2}*(V-2\sqrt {T} )=(n+\frac{1}{2})\pi \hbar }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt {2mE} \left ({-\frac{e^{2}}{E}-2\sqrt {-\frac{\hbar ^{2}l(l+1)}{2mE}} } \right )=(n+\frac{1}{2})\pi \hbar }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -e^{2}\sqrt {\frac{2m}{E}} -2\sqrt {\hbar ^{2}l(l+1)} =2\hbar (n+\frac{1}{2})}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{ }2\hbar (n+\frac{1}{2})+2\hbar \sqrt {l(l+1)} =e^{2}\sqrt {\frac{2m}{-E}} }