Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
Line 3: | Line 3: | ||
where W is energy density, (2) Prove the energy conservation equation: <math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>, where <math>\textbf{S}</math> is energy flux density: <math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)</math> | where W is energy density, (2) Prove the energy conservation equation: <math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>, where <math>\textbf{S}</math> is energy flux density: <math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)</math> | ||
Proof: | |||
the energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math> | (1):the energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math> | ||
so the average energy in state <math> \psi </math> is: | so the average energy in state <math> \psi </math> is: | ||
<math><E>=\iiint \psi^*H\psi d^3x=\iiint \psi^*\left(-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi\right) d^3x </math>, | <math><E>=\iiint \psi^*H\psi d^3x=\iiint \psi^*\left(-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi\right) d^3x </math>, |
Revision as of 23:20, 9 December 2009
Example 1
Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:
Proof: (1):the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,
Using Gauss Theorem for the last term: , with the condition: , for infinite surface.
Hence:
(2):first we find the time derivative of energy density: , ,
Using Schrodinger Equations: , and, ,
Also the energy flux density is: ,
So:, Hence: