|
|
Line 17: |
Line 17: |
| <math>\frac{\partial\rho}{\partial t}=\frac{\partial}{\partial t}\sum_{i}\rho_{i}(\overrightarrow{r},t)</math> | | <math>\frac{\partial\rho}{\partial t}=\frac{\partial}{\partial t}\sum_{i}\rho_{i}(\overrightarrow{r},t)</math> |
|
| |
|
| <math>=\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}(\Psi^{\star}\frac{\partial\Psi}{\partial t}+\frac{\partial\Psi^{\star}}{\partial t}\Psi)<math/> | | <math>=\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}(\Psi^{\star}\frac{\partial\Psi}{\partial t}+\frac{\partial\Psi^{\star}}{\partial t}\Psi)</math> |
|
| |
|
| <math>=\sum_{i}\rho_{i}(\overrightarrow{r_{i}},t)</math> | | <math>=\sum_{i}\rho_{i}(\overrightarrow{r_{i}},t)</math> |
To verify:
Solution: