|
|
Line 27: |
Line 27: |
| -\hbar i\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math> | | -\hbar i\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math> |
|
| |
|
| <math>\frac{\partial\Psi}{\partial t}<math>,<math>\frac{\partial\Psi^{\star}}{\partial t}</math> | | <math>\frac{\partial\Psi}{\partial t}</math>,<math>\frac{\partial\Psi^{\star}}{\partial t}</math> |
|
| |
|
| <math>\frac{\partial\rho_{i}}{\partial t}=-\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot\sum_{k}\frac{\hbar}{2im}(\Psi^{\star}\nabla_{k}^{2}\Psi-\Psi\nabla_{k}^{2}\Psi^{\star})</math> | | <math>\frac{\partial\rho_{i}}{\partial t}=-\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot\sum_{k}\frac{\hbar}{2im}(\Psi^{\star}\nabla_{k}^{2}\Psi-\Psi\nabla_{k}^{2}\Psi^{\star})</math> |
To verify:
Solution:
,