Phy5645/schrodingerequationhomework2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 27: Line 27:
-\hbar i\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math>
-\hbar i\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math>


<math>\frac{\partial\Psi}{\partial t}<math>,<math>\frac{\partial\Psi^{\star}}{\partial t}</math>
<math>\frac{\partial\Psi}{\partial t}</math>,<math>\frac{\partial\Psi^{\star}}{\partial t}</math>


<math>\frac{\partial\rho_{i}}{\partial t}=-\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot\sum_{k}\frac{\hbar}{2im}(\Psi^{\star}\nabla_{k}^{2}\Psi-\Psi\nabla_{k}^{2}\Psi^{\star})</math>
<math>\frac{\partial\rho_{i}}{\partial t}=-\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot\sum_{k}\frac{\hbar}{2im}(\Psi^{\star}\nabla_{k}^{2}\Psi-\Psi\nabla_{k}^{2}\Psi^{\star})</math>

Revision as of 23:33, 9 December 2009

To verify:

Solution:

,