|
|
Line 1: |
Line 1: |
| Assume that the Hamiltonian for a system of N particles is <math>\hat{H}=-\sum_{i=1}^{N}\frac{\hbar}{2m}\nabla_{i}^{2}+\sum_{i=1}^{N}\rho_{ij}[|\overrightarrow{r_{i}}-\overrightarrow{r_{j}}|]</math>, and <math>\Psi(\overrightarrow{r_{1}}\overrightarrow{r_{2}}\cdots\overrightarrow{r_{N}},t)</math> is the wave fuction. | | Assume that the Hamiltonian for a system of N particles is <math>\hat{H}=-\sum_{i=1}^{N}\frac{\hbar}{2m}\nabla_{i}^{2}+\sum_{i=1}^{N}\rho_{ij}[|\overrightarrow{r_{i}}-\overrightarrow{r_{j}}|]</math>, and <math>\Psi(\overrightarrow{r_{1}}\overrightarrow{r_{2}}\cdots\overrightarrow{r_{N}},t)</math> is the wave fuction. |
|
| |
|
| | We define: |
| <math>\rho(\overrightarrow{r},t)=\sum\rho_{i}(\overrightarrow{r},t)</math> | | <math>\rho(\overrightarrow{r},t)=\sum\rho_{i}(\overrightarrow{r},t)</math> |
|
| |
|
Assume that the Hamiltonian for a system of N particles is
, and
is the wave fuction.
We define:
To verify:
Solution:
,