Phy5645/schrodingerequationhomework2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 29: Line 29:
-i\hbar\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math>
-i\hbar\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math>


<math>\frac{\partial\Psi}{\partial t}</math>,<math>\frac{\partial\Psi^{\star}}{\partial t}</math>
Substitute <math>\frac{\partial\Psi}{\partial t}</math> and <math>\frac{\partial\Psi^{\star}}{\partial t}</math> in to formula <math>(1)</math>


<math>\frac{\partial\rho_{i}}{\partial t}=-\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot\sum_{k}\frac{\hbar}{2im}(\Psi^{\star}\nabla_{k}^{2}\Psi-\Psi\nabla_{k}^{2}\Psi^{\star})</math>
<math>\frac{\partial\rho_{i}}{\partial t}=-\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot\sum_{k}\frac{\hbar}{2im}(\Psi^{\star}\nabla_{k}^{2}\Psi-\Psi\nabla_{k}^{2}\Psi^{\star})</math>

Revision as of 23:55, 9 December 2009

Assume that the Hamiltonian for a system of N particles is , and is the wave fuction.

We define:

Prove the following relation:

Solution:

By definition:

The wave function of many particles system satisfies the Schrodinger equation for many particles system:

Substitute and in to formula