|
|
Line 29: |
Line 29: |
| -i\hbar\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math> | | -i\hbar\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math> |
|
| |
|
| Substitute <math>\frac{\partial\Psi}{\partial t}</math> and <math>\frac{\partial\Psi^{\star}}{\partial t}</math> in to formula <math>(1)</math> | | Substitute <math>\frac{\partial\Psi}{\partial t}</math> and <math>\frac{\partial\Psi^{\star}}{\partial t}</math> in to formula <math>(1)</math>, we get: |
|
| |
|
| <math>\frac{\partial\rho_{i}}{\partial t}=-\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot\sum_{k}\frac{\hbar}{2im}(\Psi^{\star}\nabla_{k}^{2}\Psi-\Psi\nabla_{k}^{2}\Psi^{\star})</math> | | <math>\frac{\partial\rho_{i}}{\partial t}=-\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\cdot\sum_{k}\frac{\hbar}{2im}(\Psi^{\star}\nabla_{k}^{2}\Psi-\Psi\nabla_{k}^{2}\Psi^{\star})</math> |
Assume that the Hamiltonian for a system of N particles is
, and
is the wave fuction.
We define:
Prove the following relation:
Solution:
By definition:
The wave function of many particles system
satisfies the Schrodinger equation for many particles system:
Substitute
and
in to formula
, we get: