Phy5645/schrodingerequationhomework2: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 43: | Line 43: | ||
<math>=\sum_{i}\nabla_{i}\cdot\overrightarrow{j_{i}}(\overrightarrow{r_{i}},t)</math> | <math>=\sum_{i}\nabla_{i}\cdot\overrightarrow{j_{i}}(\overrightarrow{r_{i}},t)</math> | ||
<math>=\frac{\hbar}{2im}\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times\nabla_{j}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})</math> | <math>=\frac{\hbar}{2im}\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times\nabla_{j}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star}) \quad (2)</math> | ||
<math>\frac{\partial\rho}{\partial t}=\sum_{i}\frac{\partial\rho}{\partial t}=\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times\sum_{k}\frac{\hbar}{2im}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})</math> | <math>\frac{\partial\rho}{\partial t}=\sum_{i}\frac{\partial\rho}{\partial t}=\sum_{i}\int\cdots\int d^{3}r_{1}\cdots d^{3}r_{i-1}d^{3}r_{i+1}\cdots d^{3}r_{N}\times\sum_{k}\frac{\hbar}{2im}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star}) (3) </math> | ||
<math>i\neq k</math> | <math>i\neq k</math> |
Revision as of 23:58, 9 December 2009
Assume that the Hamiltonian for a system of N particles is , and is the wave fuction.
We define:
Prove the following relation:
Solution:
By definition:
The wave function of many particles system satisfies the Schrodinger equation for many particles system:
Substitute and in to formula , we get:
We can also have: