Phy5645/schrodingerequationhomework2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Assume that the Hamiltonian for a system of N particles is <math>\hat{H}=-\sum_{i=1}^{N}\frac{\hbar}{2m}\nabla_{i}^{2}+\sum_{i=1}^{N}\rho_{ij}[|\overrightarrow{r_{i}}-\overrightarrow{r_{j}}|]</math>, and <math>\Psi(\overrightarrow{r_{1}}\overrightarrow{r_{2}}\cdots\overrightarrow{r_{N}},t)</math> is the wave fuction.
We define:
<math>\rho(\overrightarrow{r},t)=\sum\rho_{i}(\overrightarrow{r},t)</math>
<math>\overrightarrow{j}(\overrightarrow{r},t)=\sum\overrightarrow{j_{i}}(\overrightarrow{r},t)</math>
<math>\rho_{1}(\overrightarrow{r_{1}},t)=\int\cdots\int d^{3}r_{3}d^{3}r_{3}\cdots d^{3}r_{N}\Psi^{\star}\Psi</math>
<math>\overrightarrow{j}(\overrightarrow{r},t)=\frac{\hbar}{2im}\int\cdots\int d^{3}r_{3}d^{3}r_{3}\cdots d^{3}r_{N}(\Psi^{\star}\nabla_{1}\Psi-\Psi\nabla_{1}\Psi^{\star})</math>
Prove the following relation: <math>\frac{\partial\rho}{\partial t}+\nabla\cdot\overrightarrow{j}=0</math>
Solution:
By definition:
By definition:


Line 48: Line 32:


Combine the sum over in equation <math>(3)</math>, we find that the terms for <math>i\neq k</math> do not exist any more, so equation <math>(2)</math> is the same as equation <math>(3)</math>, so we get <math>\frac{\partial\rho}{\partial t}+\nabla\cdot\overrightarrow{j}=0</math>
Combine the sum over in equation <math>(3)</math>, we find that the terms for <math>i\neq k</math> do not exist any more, so equation <math>(2)</math> is the same as equation <math>(3)</math>, so we get <math>\frac{\partial\rho}{\partial t}+\nabla\cdot\overrightarrow{j}=0</math>
Back to [[Relation Between the Wave Function and the Probability Density]]

Revision as of 16:23, 11 April 2013

By definition:

The wave function of many particles system satisfies the Schrodinger equation for many particles system:

Substitute and in to formula , we get:

We can also have:

Combine the sum over in equation , we find that the terms for do not exist any more, so equation is the same as equation , so we get

Back to Relation Between the Wave Function and the Probability Density