Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==  Example 1  ==
==  Example 1  ==
Consider a particle moving in a potential field <math>V(\textbf{r})</math>,
(1) Prove the average energy equation: <math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math>, where W is energy density,
(2) Prove the energy conservation equation: <math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>, where <math>\textbf{S}</math> is energy flux density: <math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)</math>
Proof:


(1):the energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math>
(1):the energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math>

Revision as of 16:18, 11 April 2013

Example 1

(1):the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,

Using Gauss Theorem for the last term: , with the condition: , for infinite surface.

Hence:

(2):first we find the time derivative of energy density:

, ,

Using Schrodinger Equations: , and, ,

Also the energy flux density is: ,

So:, Hence: