Harmonic Oscillator in an Electric Field: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 14: | Line 14: | ||
Notice that <math>H_{x} ,H_{z}</math>are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function | Notice that <math>H_{x} ,H_{z}</math>are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function | ||
<math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math>, where<math>\psi _{2}(y)< | <math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math>, where | ||
<math>\psi _{2}(y)</math>, and | |||
<math>\psi _{3}(z)</math> are the wave functions of the one dimensional harmonic oscillator: | |||
<math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math> | |||
<math>\psi _{2}(y)=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{2}}n_{2}!}}H_{n_{2}}e^{\frac{-y^{2}}{2\lambda ^{2}}}</math> | |||
<math>\psi _{3}(z)=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{3}}n_{3}!}}H_{n_{3}}e^{\frac{-z^{2}}{2\lambda ^{2}}}</math> | |||
<math>\lambda =\sqrt{\frac{\hbar}{m\omega }},</math> The equation of the<math>\psi _{1}(x)</math> is | |||
<math>-\frac{\hbar^{2}}{2m}\frac{\partial^2\psi _{1}(x)}{\partial x^2}+\frac{m\omega ^{2}}{2}x^{2}\psi _{1}(x)-eE_{0}(x)\psi _{1}(x)=E_{1}\psi _{1}(x)</math> | |||
changing variables to | |||
we obtain the diffrential equation for a one dimensional harmonic oscillator with the solution | |||
<math>\psi _{1}(\xi )=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{1}}n_{1}!}}H_{n_{1}}e^{\frac{-\xi ^{2}}{2\lambda ^{2}}}</math> | |||
<math>\psi _{1}(x )=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{1}}n_{1}!}}H_{n_{1}(x)}exp(\frac{-1}{2}(\frac{x}{\lambda }-\frac{eE_{0}{\sqrt{\hbar m\omega^{3}})^2}})</math> | |||
The quantization condition in this case is | |||
<math>\frac{(2E_{1})}{\hbar\omega }+\frac{(eE_{0})^2}{\hbar m\omega ^{3}}=2n_{1}+1</math> | |||
so the energy eigenvalues are | |||
<math>E_{1}=(n_{1}+\frac{1}{2})\hbar</math> |
Revision as of 01:27, 11 December 2009
- consider a particle with charge e moving under three dimensional isotropic harmonic potential l
in an electric field Find the eigen states and eigen values of the patricle
the Hamiltonian of the system is:
we seprate the Hamiltonian () where
Notice that are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function
, where
, and are the wave functions of the one dimensional harmonic oscillator:
The equation of the is
changing variables to
we obtain the diffrential equation for a one dimensional harmonic oscillator with the solution
The quantization condition in this case is so the energy eigenvalues are