Harmonic Oscillator in an Electric Field: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:


Notice that <math>H_{x} ,H_{z}</math>are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function
Notice that <math>H_{x} ,H_{z}</math>are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function
  <math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math>, where<math>\psi _{2}(y)<\math>, and </math>\psi _{3}(z) </math>are the wave functions of the one dimensional harmonic oscillator:
  <math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math>, where  
<math>\psi _{2}(y)</math>, and  
<math>\psi _{3}(z)</math> are the wave functions of the one dimensional harmonic oscillator:
<math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math>
 
<math>\psi _{2}(y)=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{2}}n_{2}!}}H_{n_{2}}e^{\frac{-y^{2}}{2\lambda ^{2}}}</math>
 
<math>\psi _{3}(z)=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{3}}n_{3}!}}H_{n_{3}}e^{\frac{-z^{2}}{2\lambda ^{2}}}</math>
<math>\lambda =\sqrt{\frac{\hbar}{m\omega }},</math> The equation of the<math>\psi _{1}(x)</math> is
 
<math>-\frac{\hbar^{2}}{2m}\frac{\partial^2\psi _{1}(x)}{\partial x^2}+\frac{m\omega ^{2}}{2}x^{2}\psi _{1}(x)-eE_{0}(x)\psi _{1}(x)=E_{1}\psi _{1}(x)</math>
changing variables to
 
we obtain the diffrential equation for a one dimensional harmonic oscillator with the solution
 
<math>\psi _{1}(\xi )=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{1}}n_{1}!}}H_{n_{1}}e^{\frac{-\xi ^{2}}{2\lambda ^{2}}}</math>
 
<math>\psi _{1}(x )=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{1}}n_{1}!}}H_{n_{1}(x)}exp(\frac{-1}{2}(\frac{x}{\lambda }-\frac{eE_{0}{\sqrt{\hbar m\omega^{3}})^2}})</math>
 
The quantization condition in this case is
<math>\frac{(2E_{1})}{\hbar\omega }+\frac{(eE_{0})^2}{\hbar m\omega ^{3}}=2n_{1}+1</math>
so the energy eigenvalues are
<math>E_{1}=(n_{1}+\frac{1}{2})\hbar</math>

Revision as of 01:27, 11 December 2009

consider a particle with charge e moving under three dimensional isotropic harmonic potential l

in an electric field Find the eigen states and eigen values of the patricle

the Hamiltonian of the system is:

we seprate the Hamiltonian () where

Notice that are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function

, where 

, and are the wave functions of the one dimensional harmonic oscillator:

The equation of the is

changing variables to

we obtain the diffrential equation for a one dimensional harmonic oscillator with the solution

The quantization condition in this case is so the energy eigenvalues are