Harmonic Oscillator in an Electric Field: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
<math>V(r)=\frac{1}{2}m{\omega }^2{r}^2</math>'''in an electric field''' <math>E=E_{0}(x)</math> '''Find the eigen states and eigen values of the patricle''' | <math>V(r)=\frac{1}{2}m{\omega }^2{r}^2</math>'''in an electric field''' <math>E=E_{0}(x)</math> '''Find the eigen states and eigen values of the patricle''' | ||
the Hamiltonian of the system is: | |||
<math>H=\frac{P^2}{2m}+\frac{1}{2}m\omega ^2r^2-eE_{0}x</math> | <math>H=\frac{P^2}{2m}+\frac{1}{2}m\omega ^2r^2-eE_{0}x</math> | ||
Line 14: | Line 16: | ||
Notice that <math>H_{x} ,H_{z}</math>are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function | Notice that <math>H_{x} ,H_{z}</math>are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function | ||
<math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math>, where | |||
<math>\psi _{2}(y)</math>, and | <math>\psi _{2}(y)</math>, and | ||
<math>\psi _{3}(z)</math> are the wave functions of the one dimensional harmonic oscillator: | <math>\psi _{3}(z)</math> are the wave functions of the one dimensional harmonic oscillator: | ||
Line 25: | Line 29: | ||
<math>-\frac{\hbar^{2}}{2m}\frac{\partial^2\psi _{1}(x)}{\partial x^2}+\frac{m\omega ^{2}}{2}x^{2}\psi _{1}(x)-eE_{0}(x)\psi _{1}(x)=E_{1}\psi _{1}(x)</math> | <math>-\frac{\hbar^{2}}{2m}\frac{\partial^2\psi _{1}(x)}{\partial x^2}+\frac{m\omega ^{2}}{2}x^{2}\psi _{1}(x)-eE_{0}(x)\psi _{1}(x)=E_{1}\psi _{1}(x)</math> | ||
changing variables to | |||
changing variables to <math>\xi =\frac{x}{\lambda }-\frac{eE_{0}}{\sqrt{\hbar m \omega }}</math> | |||
<math>\frac{\partial^2 \psi _{1}}{\partial \xi ^2}+(\frac{2E_{1}}{\hbar \omega })\frac{(eE_{0})^{2})}{\sqrt{\hbar m\omega ^{3}}})\psi _{1}-\xi ^{2}\psi _{1}=0</math> | |||
we obtain the diffrential equation for a one dimensional harmonic oscillator with the solution | we obtain the diffrential equation for a one dimensional harmonic oscillator with the solution | ||
Line 31: | Line 38: | ||
<math>\psi _{1}(\xi )=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{1}}n_{1}!}}H_{n_{1}}e^{\frac{-\xi ^{2}}{2\lambda ^{2}}}</math> | <math>\psi _{1}(\xi )=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{1}}n_{1}!}}H_{n_{1}}e^{\frac{-\xi ^{2}}{2\lambda ^{2}}}</math> | ||
<math>\psi _{1}( | <math>\psi _{1}(\xi )=\frac{1}{\sqrt{\pi \lambda 2^{n_{1}}n_{1}!}}H_{n_{1}}(x) exp[-\frac{1}{2}(\frac{x}{\lambda }-\frac{eE_{0}}{\sqrt{\hbar m\omega ^{3}}})^{2}] | ||
(E_{1})_{n_{1}}=(n_{1}+\frac{1}{2})\hbar \omega -\frac{(eE_{0})^{2}}{2m\omega ^{2}}</math> | |||
The quantization condition in this case is | The quantization condition in this case is | ||
<math>\frac{(2E_{1})}{\hbar\omega }+\frac{(eE_{0})^2}{\hbar m\omega ^{3}}=2n_{1}+1</math> | <math>\frac{(2E_{1})}{\hbar\omega }+\frac{(eE_{0})^2}{\hbar m\omega ^{3}}=2n_{1}+1</math> | ||
so the energy eigenvalues are | so the energy eigenvalues are | ||
<math>E_{1}=(n_{1}+\frac{1}{2})\hbar</math> | <math>(E_{1})_{n_{1}}=(n_{1}+\frac{1}{2})\hbar \omega -\frac{(eE_{0})^{2}}{2m\omega ^{2}}</math> | ||
In conclusion,the wave functions are <math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math> | |||
<math>E_{n_{1},n_{2},n_{3}}=E_{n_{1}}+E_{n_{2}}+E_{n_{3}}=(n_{1}+n_{2}+n_{3}+\frac{3}{2})\hbar \omega -\frac{(eE_{0})^{2}}{2m\omega ^{2}}</math> |
Revision as of 02:03, 11 December 2009
- consider a particle with charge e moving under three dimensional isotropic harmonic potential l
in an electric field Find the eigen states and eigen values of the patricle
the Hamiltonian of the system is:
we seprate the Hamiltonian () where
Notice that are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function
, where
, and are the wave functions of the one dimensional harmonic oscillator:
The equation of the is
changing variables to
we obtain the diffrential equation for a one dimensional harmonic oscillator with the solution
The quantization condition in this case is so the energy eigenvalues are
In conclusion,the wave functions are