DetailedBalance: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:


b) Establish the detailed balance between the reduced transition probabilities of the direct <math>i \rightarrow f</math>, and inverse <math>f \rightarrow i</math> processes.
b) Establish the detailed balance between the reduced transition probabilities of the direct <math>i \rightarrow f</math>, and inverse <math>f \rightarrow i</math> processes.
SOLUTION:
a) According to the Wigner-Eckert theorem, the entire dependence of the matrix element of a tensor operator on the magnetic quantum numbers is concentrated in the vector coupling coefficients,
<math>\langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle = (-)^{J_f-M_f}
\left( \begin{array}{lll}
J_f & \lambda & J_i  \\
-M_f & \mu & M_i
\end{array} \right)
(f|| T_{\lambda}|| i) </math>
We obtain the rate by squaring this and summing over <math>\mu</math> and <math>M_f</math>
<math>B(T_{\lambda}; i \rightarrow f)= (f|| T_{\lambda}|| i)^2 \sum_{\mu M_f}
\left( \begin{array}{lll}
J_f & \lambda & J_i  \\
-M_f & \mu & M_i
\end{array} \right)
\left( \begin{array}{lll}
J_f & \lambda & J_i  \\
-M_f & \mu & M_i
\end{array} \right)</math>

Revision as of 16:14, 12 April 2010

Consider a transition from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \rightarrow f} between two states of the nucleus with spins Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_i } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_f} , respectively. The transition probability is proportional to the squared matrix element where is a hermitian tensor operator of rank Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} responsible for the process. Define the reduced transition probability

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(T_{\lambda}; i \rightarrow f)=\sum_{\mu M_f}|\langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle|^2}

as a sum of squared matrix elements over final projections Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_f} and operator projections Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} .


a) Express Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(T_{\lambda}; i \rightarrow f)} in terms of the reduced matrix element Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f|| T_{\lambda}|| i)} and show that it does not depend on the initial projection Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_i} .

b) Establish the detailed balance between the reduced transition probabilities of the direct Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \rightarrow f} , and inverse Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \rightarrow i} processes.


SOLUTION:

a) According to the Wigner-Eckert theorem, the entire dependence of the matrix element of a tensor operator on the magnetic quantum numbers is concentrated in the vector coupling coefficients,


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle = (-)^{J_f-M_f} \left( \begin{array}{lll} J_f & \lambda & J_i \\ -M_f & \mu & M_i \end{array} \right) (f|| T_{\lambda}|| i) }

We obtain the rate by squaring this and summing over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_f}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(T_{\lambda}; i \rightarrow f)= (f|| T_{\lambda}|| i)^2 \sum_{\mu M_f} \left( \begin{array}{lll} J_f & \lambda & J_i  \\  -M_f & \mu & M_i \end{array} \right) \left( \begin{array}{lll} J_f & \lambda & J_i  \\  -M_f & \mu & M_i \end{array} \right)}