Phy5646/Born-Oppenheimer Approximation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 22: Line 22:
To solve: <math><\overset{\rightharpoonup }{R'}\left|<n\left(\overset{\rightharpoonup }{R}\right)\right|H|\Psi ></math>
To solve: <math><\overset{\rightharpoonup }{R'}\left|<n\left(\overset{\rightharpoonup }{R}\right)\right|H|\Psi ></math>


<math> \hat{H}_{eff} = \frac{1}{2m}(\overrightarrow{P} - \overrightarrow{A}^{n})^2 + \Phi^{(n)} </math>
You will find:


If <math> | n(R) \rangle </math> is the eigenstate of the fast degree of freedom, the following quantities are defined:
<math>\left[\frac{1}{2M}\left(\overset{\rightharpoonup }{P}-\overset{\rightharpoonup }{A}^{(n)}\right)^2+\Phi ^{(n)}+E_n\left(\overset{\rightharpoonup }{R}\right)\right]\Psi \left(\overset{\rightharpoonup }{R}\right)=E\Psi \left(\overset{\rightharpoonup }{R}\right)</math>


The Berry Vector Potential:
The Berry Vector Potential:
Line 31: Line 31:
The Berry Scalar Potential:
The Berry Scalar Potential:
<math> \Phi^{(n)} = \frac{\hbar^2}{2m} [ \langle \overrightarrow{\nabla}_R n(R) | \overrightarrow{\nabla}_R n(R) \rangle  - \langle \overrightarrow{\nabla}_R n(R) | n(R) \rangle \langle n(R) | \overrightarrow{\nabla}_R n(R) \rangle ]</math>
<math> \Phi^{(n)} = \frac{\hbar^2}{2m} [ \langle \overrightarrow{\nabla}_R n(R) | \overrightarrow{\nabla}_R n(R) \rangle  - \langle \overrightarrow{\nabla}_R n(R) | n(R) \rangle \langle n(R) | \overrightarrow{\nabla}_R n(R) \rangle ]</math>
It's a method to get the energy of the system. Indispensable method in Quantum Chemistry.

Latest revision as of 20:02, 20 April 2010

Consider the problem of two protons and one electron.

As for the two protons, we consider the two bodies problem as one body problem.

The wave function is:


First step:

Consider R is fixed, to solve the schrodinger equation of electron.


Second step:

Seek an solution of H as:

To solve:

You will find:

The Berry Vector Potential:

The Berry Scalar Potential:

It's a method to get the energy of the system. Indispensable method in Quantum Chemistry.