Phy5646/Einstein coefficients example: Difference between revisions
JorgeBarreda (talk | contribs) No edit summary |
JorgeBarreda (talk | contribs) No edit summary |
||
Line 9: | Line 9: | ||
W_{21}^{abs}=P_1 B_{21} u(w_{21}) | W_{21}^{abs}=P_1 B_{21} u(w_{21}) | ||
</math> | </math> | ||
:<math> | :<math> | ||
W_{12}^{ind}=P_2 B_{12} u(w_{21}) | W_{12}^{ind}=P_2 B_{12} u(w_{21}) | ||
</math> | </math> | ||
:<math> | :<math> | ||
W_{12}^{spon}=P_2 A_{12} | W_{12}^{spon}=P_2 A_{12} |
Revision as of 10:49, 23 April 2010
(Submitted by Team 1)
This example was taken from "Theory and Problems of Quantum Physics", SCHAUM'S OUTLINE SERIES, p. 296-297.
Problem: A two-level system with eigenvalues Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2 > E_1} is in the thermodynamics equilibrium with a heat reservoir at absolute temperature T. The system undergoes the following transitions: (i) Absorption Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 \rightarrow 2} , (ii) induced emission Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \rightarrow 1} , and (iii) spontaneous emission Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \rightarrow 1} . The transition rates for each of these processes are given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_{21}^{abs}=P_1 B_{21} u(w_{21}) }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_{12}^{ind}=P_2 B_{12} u(w_{21}) }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_{12}^{spon}=P_2 A_{12} }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(w_{21})} is the energy distribution of the radiation field, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_j} is the probability of finding the system in level j of degeneracy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_j} (j=1,2), and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{12}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{12}} are the Einstein coefficients for spontaneous and induced emission, respectively. (a) Calculate the probabilities Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_2} under equilibrium conditions. (b) Use the rates together with Planck's formula for black body radiation to show that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_1 B_{21} = g_2 B_{12} }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{12}= \frac{\hbar w_{21}^3}{\pi^2 c^3} B_{12} }
Solution (a):
Under thermal equilibrium at absolute temperature T, the probability of finding the system in one of its stationary states |i> with and eigenvalue Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_i} is proportional to the Boltzmann factor Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{\frac{-\epsilon_i}{kT}}} . In this problem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_i} assumes the value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2} with respective degenerecies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_i = g_1, g_2} (a two-level system). Therefore,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1=C g_1 e^{\frac{-E_1}{kT}} }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_2=C g_2 e^{\frac{-E_2}{kT}} }
where C is the normalization constant. Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1 + P_2 =1} , we immediately find that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C^{-1} = g_1 e^{\frac{-E_1}{kT}} + g_2 e^{\frac{-E_2}{kT}} }
Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2 - E_1 = \hbar w_{21}}
, we have
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{P_1}{P_2} = \frac{g_1}{g_2} e^{\frac{\hbar w_{21}}{k T}} }
Solution (b):
Suppose that a larger number of systems, such as in part (a), form a closed cavity that is kept in equilibrium with its own thermal radiation at constant temperature T. In this case,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_{21}^{abs} = W_{12}^{ind} + W_{12}^{spon} }
Then from the transitions rates, we obtain
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1 B_{21} u(w_{21}) = P_2 B_{12} u(w_{21}) + P_2 A_{12} }
or from the last result in part (a)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_1 B_{21} (e^{\frac{\hbar w_{21}}{kT}} - \frac{g_2 B_{12}}{g_1 B_{21}}) \frac{\hbar w_{21}^3}{\pi^2 c^3}= g_2 A_{12}(e^{\frac{\hbar w_{21}}{kT}} - 1) }
Hence,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_1 B_{21} =g_2 B_{12} }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{12}= \frac{\hbar w_{21}^3}{\pi^2 c^3} B_{12} }