|
|
Line 19: |
Line 19: |
|
| |
|
| <math>\frac{\partial \mathcal H}{\partial b} = 0 = \frac{\hbar^{2}}{mb^{3}} + \frac{-e^2}{4\pi \epsilon_{0}}\left [\frac{1}{b(1 + \mu b/2)^{2}} + \frac{\mu}{b(1+\mu b/2)^{3}} \right ] = frac{\hbar^{2}}{mb^{3}} + \frac{-e^2}{4\pi \epsilon_{0}b^{2}}\left [\frac{1 + 3\mu b/2)}{(1 + \mu b/2)^3} \right ]</math> | | <math>\frac{\partial \mathcal H}{\partial b} = 0 = \frac{\hbar^{2}}{mb^{3}} + \frac{-e^2}{4\pi \epsilon_{0}}\left [\frac{1}{b(1 + \mu b/2)^{2}} + \frac{\mu}{b(1+\mu b/2)^{3}} \right ] = frac{\hbar^{2}}{mb^{3}} + \frac{-e^2}{4\pi \epsilon_{0}b^{2}}\left [\frac{1 + 3\mu b/2)}{(1 + \mu b/2)^3} \right ]</math> |
| | |
| | Or, <math>frac{4\pi\epsilon_{0}\hbar^{2}}{me_{2}} = b\frac{1 + 3\mu b/2)}{(1 + \mu b/2)^3}</math> |
| | Or, <math>b\frac{1 + 3\mu b/2)}{(1 + \mu b/2)^3} = a</math> |
| | Now since <math>\mu a \ll 1, <math>\mu b \ll 1</math></math>. So |
| | |
| | <math>b(1 + 3\mu b/2)\left [1 - \frac{3\mu b}{2} + 6 \frac{\mu^{2} b^{2}}{4} \right ] \approx a</math> |
| | Or, <math>a \approx = b\left [ 1-3(\mu b)^{2}/4 \right ]</math> |
| | |
| | In the second order term, we can replace <math>b</math> by <math>a</math> So |
| | |
| | <math>b \approx a\left [1+3(\mu a)^{2}/4 \right ]</math> |
Revision as of 05:19, 25 April 2010
(Introduction to Qusntum Mechanics, Griffiths, 2e)Problem 7.14
If the photon has a nonzero mass
, the Coulomb potential would be rep[laced by the Yukawa potential,
where
.
With a trial wave function of your own devising, estimate the binding energy of a "hydrogen" atom with this potential. Assume
, where
, and give your answer correct to order
Solution:
The simplest trial function looks exactly like the hydrogen atom ground wavefunction, but with
changed to
.
.
acts as a variational parameter.
The hydrogen atom Hamiltonian is
For hydrogen atom with standard Coulomb potential (massless photons), we have
with
For the Yukawa potential,
and
Or,
Or,
Or,
Now since
</math>. So
Or,
In the second order term, we can replace
by
So