Phy5646/soham1: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:


<math>\frac{\partial \mathcal H}{\partial b} = 0 = \frac{\hbar^{2}}{mb^{3}} + \frac{-e^2}{4\pi \epsilon_{0}}\left [\frac{1}{b(1 + \mu b/2)^{2}} + \frac{\mu}{b(1+\mu b/2)^{3}} \right ] = frac{\hbar^{2}}{mb^{3}} + \frac{-e^2}{4\pi \epsilon_{0}b^{2}}\left [\frac{1 + 3\mu b/2)}{(1 + \mu b/2)^3} \right ]</math>
<math>\frac{\partial \mathcal H}{\partial b} = 0 = \frac{\hbar^{2}}{mb^{3}} + \frac{-e^2}{4\pi \epsilon_{0}}\left [\frac{1}{b(1 + \mu b/2)^{2}} + \frac{\mu}{b(1+\mu b/2)^{3}} \right ] = frac{\hbar^{2}}{mb^{3}} + \frac{-e^2}{4\pi \epsilon_{0}b^{2}}\left [\frac{1 + 3\mu b/2)}{(1 + \mu b/2)^3} \right ]</math>
Or, <math>frac{4\pi\epsilon_{0}\hbar^{2}}{me_{2}} = b\frac{1 + 3\mu b/2)}{(1 + \mu b/2)^3}</math>
Or, <math>b\frac{1 + 3\mu b/2)}{(1 + \mu b/2)^3} = a</math>
Now since <math>\mu a \ll  1, <math>\mu b \ll  1</math></math>. So
<math>b(1 + 3\mu b/2)\left [1 - \frac{3\mu b}{2} + 6 \frac{\mu^{2} b^{2}}{4} \right ] \approx a</math>
Or, <math>a \approx = b\left [ 1-3(\mu b)^{2}/4  \right ]</math>
In the second order term, we can replace <math>b</math> by <math>a</math> So
<math>b \approx a\left [1+3(\mu a)^{2}/4  \right ]</math>

Revision as of 05:19, 25 April 2010

(Introduction to Qusntum Mechanics, Griffiths, 2e)Problem 7.14

If the photon has a nonzero mass , the Coulomb potential would be rep[laced by the Yukawa potential, where . With a trial wave function of your own devising, estimate the binding energy of a "hydrogen" atom with this potential. Assume , where , and give your answer correct to order

Solution:

The simplest trial function looks exactly like the hydrogen atom ground wavefunction, but with changed to . . acts as a variational parameter. The hydrogen atom Hamiltonian is

For hydrogen atom with standard Coulomb potential (massless photons), we have with

For the Yukawa potential, and

Or,

Or, Or, Now since </math>. So

Or,

In the second order term, we can replace by So