Phy5646/AddAngularMomentumProb: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:


1.) First express <math>\ S^2</math> in terms of <math>\ S_1^2</math>, <math>\ S_2^2</math>, <math>\ S_{1z}</math>, <math>\ S_{2z}</math>, <math>\ S_{1\plusmn}</math> and <math>\ S_{2\plusmn}</math>:  
1.) First express <math>\ S^2</math> in terms of <math>\ S_1^2</math>, <math>\ S_2^2</math>, <math>\ S_{1z}</math>, <math>\ S_{2z}</math>, <math>\ S_{1\plusmn}</math> and <math>\ S_{2\plusmn}</math>:  
<math>\ S^2 = (\vec{S_1} + \vec{S_2})^2 = S_1^2 + S_2^2 +2\vec{S_1} \cdot \vec{S_2} = S_1^2 + S_2^2 + 2(S_{1x}S_{2x} + S_{1y}S_{2y} + S_{1z}S_{2z}) = S_1^2 + S_2^2 + 2S_{1z}S_{2z}+S_{1+}S_{2-}+S_{1-}S_{2+}</math>.
<math>\ S^2 = (\vec{S_1} + \vec{S_2})^2 = S_1^2 + S_2^2 +2\vec{S_1} \cdot \vec{S_2} = S_1^2 + S_2^2 + 2(S_{1x}S_{2x} + S_{1y}S_{2y} + S_{1z}S_{2z}) = S_1^2 + S_2^2 + 2S_{1z}S_{2z}+S_{1+}S_{2-}+S_{1-}S_{2+}</math>


2.) Act with this on a 2-electron state with arbitrary <math>\ S_z </math> quantum numbers:
2.) Then act with this on direct product state <math>\ |m_1m_2\rangle </math>:
<math>\ S^2|m_1m_2\rangle = (S_1^2 + S_2^2 + 2S_{1z}S_{2z}+S_{1+}S_{2-}+S_{1-}S_{2+})|m_1m_2\rangle </math>
<math>\ = S_1^2|m_1m_2\rangle + S_2^2|m_1m_2\rangle + 2S_{1z}S_{2z}|m_1m_2\rangle+S_{1+}S_{2-}|m_1m_2\rangle+S_{1-}S_{2+}|m_1m_2\rangle </math>
<math>\ = \hbar^2 \frac{1}{2}\left(\frac{1}{2}+1 \right)|m_1m_2\rangle + \hbar^2\frac{1}{2}\left(\frac{1}{2}+1\right)|m_1m_2\rangle








</math>





Revision as of 19:33, 25 April 2010

Based on exercise 15.1.1. from Principles of Quantum Mechanics, 2nd ed. by Shankar:

Express as a matrix for two spin-1/2 particles in the direct product basis.

1.) First express in terms of , , , , and :

2.) Then act with this on direct product state :